11 research outputs found

    Valproic acid malabsorption in 30 year-old female patient – Case study

    Get PDF
    Aim Valproic acid (VPA) is used in epilepsy treatment and as a stabilizer in bipolar affective disorder for over 40 years. Although, the pharmacokinetic properties of valproic acid are well known, it is often forgotten that the formulation of the drug significantly influences its gastrointestinal absorption. Case We are describing the case of 30 year-old female patient, diagnosed at the age of 13 with juvenile myoclonic epilepsy. Complete ineffectiveness of the treatment was caused by malabsorption of sodium valproate and valproic acid in the patient. The change of the drug formulation resulted in a several times higher bioavailability of the drug and a partial improvement of the patient's clinical condition. Commentary Low concentration of valproic acid after administration the slow-released tablets are usually observed. However, a low bioavailability beside the bad compliance should be considered when the minimal level is extremely low during therapy. It is known that form of the drug, beside presence of food and its components, as well as gastrointestinal tract condition or interactions with other drugs can influence the drug level. Modification of the formulation of the drug may lead to improvement of absorption and increase its effectiveness

    Impact of treatment on blood-brain barrier impairment in Wilson’s disease

    Get PDF
    Introduction. Our study assessed changes in concentrations of serum markers for brain damage and blood-brain barrier (BBB) dysfunction in untreated and treated Wilson’s disease (WD) patients, and examined correlations between these changes and neurological impairment. Objective. These results hold the potential to determine BBB impairment and neurological advancement in WD to develop the most effective treatment for patients with severe neurological deterioration. Material and methods. The study groups included 171 patients with WD (77 with hepatic and 94 with neurological manifestations), treated either for up to 5 or 15 years, and 88 healthy controls. Serum concentrations of intercellular adhesion molecule 1 (ICAM1), P-selectin, matrix metallopeptidase 9 (MMP9), glial fibrillary acidic protein (GFAP), and S100 calcium-binding protein B (S100B) were measured before and during anti-copper treatment. The Unified Wilson’s disease Rating Scale (UWDRS) was used to assess neurological advancement. Results. ICAM1 concentrations were elevated before and during anti-copper treatment compared to controls (p < 0.01), but therapy led to substantial decreases both in patients with hepatic (p < 0.01) and in patients with neurological manifestations (p < < 0.05). P-selectin concentrations remained elevated before and during treatment (p < 0.05) regardless of the treatment duration and disease form. MMP9 concentrations before treatment were lower (p < 0.05), but reached control levels during treatment. GFAP concentrations were significantly elevated only in untreated patients with neurological symptoms in the longer-treated group compared to controls (p < 0.05). A significant reduction during treatment was observed only in the shorter-treated neurological group (p < 0.05). No substantial changes were observed in S100B. Only ICAM1 concentrations positively correlated (r = 0.27, p < 0.001) with the UWDRS. Conclusions. Our results provide evidence of endothelial activation in WD. However, inconclusive GFAP results, and no increase in S100B, do not allow us to conclude whether the reactive gliosis is not prominent or alternatively whether the BBB is disrupted. Elevated ICAM1 concentrations and their correlation with neurological advancement indicate BBB impairment. A decrease in ICAM1 during treatment suggests that the inflammatory process is reduced, and the BBB partially repaired. Decreased MMP9 concentrations may be the result of active liver fibrosis and higher copper concentrations. Elevated P-selectin concentrations indicate a systemic inflammatory process

    Olfactory dysfunction in patients with Wilson’s Disease

    Get PDF
    Introduction. Many neurodegenerative disorders are associated with olfactory dysfunction (OD), but little is known about OD in Wilson’s Disease (WD). We evaluated olfactory function in patients with WD. Material and methods. OD was examined in 68 patients with WD and 70 sex- and age-matched healthy controls using subjective testing with ‘Sniffin Sticks’. Threshold discrimination identification (TDI) score and its three components (odour detection threshold, discrimination, and identification) were assessed. Results. Compared to controls, patients with WD had a significantly weaker sense of smell in terms of TDI (p < 0.01), odour discrimination (p < 0.01), and identification (p < 0.01), but not in terms of odour detection threshold (p = 0.27). Patients with predominantly neurological symptoms were characterised by greater OD by TDI (p < 0.01), odour detection threshold (p = 0.01), and discrimination (p = 0.03). The presence of pathological lesions (p = 0.04) in brain magnetic resonance imaging and generalised brain atrophy (p = 0.02) predisposed to worse TDI. In the WD group, weak inverse correlations between age and TDI score (r = –0.27), odour detection threshold (r = –0.3), and discrimination (r = –0.3) were found. Male gender was a risk factor for abnormal TDI in both WD and controls (both p = 0.02). Conclusions. Patients with WD, particularly older individuals, more frequently had OD than healthy volunteers. Predominantly neurological symptoms, and the presence of typical brain MRI changes, predisposed patients with WD to smell disorders

    New hippocampal neurons are not obligatory for memory formation; cyclin D2 knockout mice with no adult brain neurogenesis show learning

    No full text
    <p>The role of adult brain neurogenesis (generating new neurons) in learning and memory appears to be quite firmly established in spite of some criticism and lack of understanding of what the new neurons serve the brain for. Also, the few experiments showing that blocking adult neurogenesis causes learning deficits used irradiation and various drugs known for their side effects and the results obtained vary greatly. We used a novel approach, cyclin D2 knockout mice (D2 KO mice), specifically lacking adult brain neurogenesis to verify its importance in learning and memory. D2 KO mice and their wild-type siblings were tested in several behavioral paradigms, including those in which the role of adult neurogenesis has been postulated. D2 KO mice<br>showed no impairment in sensorimotor tests, with only sensory impairment in an olfaction-dependent task. However, D2 KO mice showed proper procedural learning as well as learning in context (including remote memory), cue, and trace fear<br>conditioning, Morris water maze, novel object recognition test, and in a multifunctional behavioral system—IntelliCages. D2 KO mice also demonstrated correct reversal learning. Our results suggest that adult brain neurogenesis is not obligatory in learning, including the kinds of learning where the role of adult neurogenesis has previously been strongly suggested.</p> <p> </p> <p> </p
    corecore