37 research outputs found

    Influence of myocardial infarction on changes in the expression of angiotensin type 1 receptor in the rat prostate

    Get PDF
    Angiotensin II (AngII) is the biologically active peptide of the renin-angiotensin system (RAS). Tissue- based, local RAS has been identified in the prostate, testis, epididymis and coagulating glands. Experimental and clinical studies have consistently shown that myocardial infarction (MI) is associated with activation of the systemic RAS with increased concentration of angiotensin peptides in the blood and changes in expression of angiotensin receptors (AT). Changes in angiotensin receptors in the renal and cardiovascular system after MI are well recognized, but the effects of MI influence on changes in other tissue like the prostate gland are unknown. In the present study, we investigated the effect of myocardial infarction on angiotensin receptor protein and mRNA expression in the rat prostate gland. MI model was established in Wistar rats by ligating the left coronary artery (modified Selye method). The levels of AT1a-b and AT2 receptor mRNAs and proteins were measured in the rat prostate. Our study demonstrates tissue-specific changes in AT1a-b and AT2 receptor expression after myocardial infarction. The results show that MI has a strong influence on the expression of angiotensin receptor type AT1 in the prostate at the protein and mRNA level. (Folia Histochemica et Cytobiologica 2011, Vol. 49, No. 3, 497–503

    Lower levels of Caveolin-1 and higher levels of endothelial nitric oxide synthase are observed in abdominal aortic aneurysm patients treated with simvastatin

    Get PDF
    This study was undertaken to verify whether simvastatin modulates Cav-1/eNOS expression, and if this modulation is associated with changes in pro- and anti-inflammatory cytokine and Toll-like receptor 4 (TLR4) level in abdominal aortic aneurysm (AAA). It is a 1:2 case-control study of non-statin (n=12) and simvastatin-treated patients (n=24) who underwent open AAA repair. Simvastatin treatment decreased Cav-1 (p0.05) and increased IL-10 concentration (p=0.055); however, TLR4 expression was unaffected, suggesting that simvastatin influences Cav-1 and eNOS in the AAA wall by other mechanisms. Simvastatin may modulate Cav-1 and eNOS expression in the aneurysmal wall, indicating a potentially beneficial role for statins in AAA patients

    Cell Cycle Status Influences Resistance to Apoptosis Induced by Oxidative Stress in Human Breast Cancer Cells, Which Is Accompanied by Modulation of Autophagy

    No full text
    Cancer cells are characterised by uncontrolled cell proliferation; however, some of them can temporarily arrest their cell cycle at the G0 or G1 phase, which could contribute to tumour heterogeneity and drug resistance. The cell cycle status plays a critical role in chemosensitivity; however, the influence of G0- and G1-arrest has not been elucidated. To study the cell cycle arrest-mediated resistance, we used MCF-7 cells and generated three populations of cells: (1) cells arrested in the G0-like phase, (2) cells that resumed the cell cycle after the G0-like phase and (3) cells arrested in early G1 with a history of G0-like arrest. We observed that both the G0-like- and the G1-arrested cells acquired resistance to apoptosis induced by oxidative stress, accompanied by a decreased intracellular reactive oxygen species and DNA damage. This effect was associated with increased autophagy, likely facilitating their survival at DNA damage insult. The cell cycle reinitiation restored a sensitivity to oxidative stress typical for cells with a non-modulated cell cycle, with a concomitant decrease in autophagy. Our results support the need for further research on the resistance of G0- and G1-arrested cancer cells to DNA-damaging agents and present autophagy as a candidate for targeting in anticancer treatment

    Coexpression of CAV-1, AT1-R and FOXM1 in prostate and breast cancer and normal cell lines and their influence on metastatic properties

    No full text
    The aim of this study was to evaluate the coexpression of caveolin-1 (CAV-1), angiotensin II type 1 receptor (AT1-R) and forkhead box Ml (FOXM1) in prostate and breast cancer cell lines, in comparison with normal cell lines. CAV-1, AT1-R and FOXM1 expression was determined by reverse transcription-quantitative polymerase chain reaction and western blot analysis in the prostate cancer cell lines PC3, DU145 and LNCaP; prostate normal cell line PNT1A; breast cancer cell lines MCF-7 and MDA-MB-231; and the normal breast cell line 184A1. A correlation between the expression levels of the investigated genes and their metastatic properties was determined by the Spearman's rank test (P<0.05) and Aspin-Welsch t-test, respectively. In prostate cell lines, a significant correlation was noted between CAV-1 and AT1-R expression and between FOXM1 and CAV-1 expression. A correlation between the expression levels of the investigated genes and their metastatic potential was also observed, with relatively high expression of all the investigated genes in the normal prostate cell line PNT1A. In comparison to prostate cancer cell lines, an adverse dependency between CAV-1, AT1-R, FOXM1 expression and metastatic potential was observed in the breast cancer cell lines. Relatively high expression of all tested genes was observed in the normal breast cell line 184A1, which was decreasing respectively with increasing metastatic potential of breast cancer cell lines. The results obtained here indicate that CAV-1, FOXM1 and AT1-R may be potential markers of tumorigenesis in certain types of cancer in vitro

    Intestinal Barrier, Claudins and Mycotoxins

    No full text
    The intestinal barrier is the main barrier against all of the substances that enter the body. Proper functioning of this barrier guarantees maintained balance in the organism. Mycotoxins are toxic, secondary fungi metabolites, that have a negative impact both on human and animal health. It was postulated that various mycotoxins may affect homeostasis by disturbing the intestinal barrier. Claudins are proteins that are involved in creating tight junctions between epithelial cells. A growing body of evidence underlines their role in molecular response to mycotoxin-induced cytotoxicity. This review summarizes the information connected with claudins, their association with an intestinal barrier, physiological conditions in general, and with gastrointestinal cancers. Moreover, this review also includes information about the changes in claudin expression upon exposition to various mycotoxins

    Anticancer activity of some polyamine derivatives on human prostate and breast cancer cell lines

    No full text
    The aim of this study was to expand our knowledge about anticancer activity of some polyamine derivatives with quinoline or chromane as terminal moieties. Tested compounds were evaluated in vitro towards metastatic human prostate adenocarcinoma (PC3), human carcinoma (DU145) and mammary gland adenocarcinoma (MCF7) cell lines. Cell viability was estimated on the basis of mitochondrial metabolic activity using water-soluble tetrazolium WST1 to establish effective concentrations of the tested compounds under experimental conditions. Cytotoxic potential of polyamine derivatives was determined by the measurement of lactate dehydrogenase activity released from damaged cells, changes in mitochondrial membrane potential, the cell cycle distribution analysis and apoptosis assay. It was revealed that the tested polyamine derivatives differed markedly in their antiproliferative activity. Bischromane derivative 5a exhibited a rather cytostatic than cytotoxic effect on the tested cells, whereas quinoline derivative 3a caused changes in cell membrane integrity, inhibited cell cycle progression, as well as induced apoptosis of prostate and breast cancer cells which suggest its potential application in cancer therapy

    All-Trans Retinoic Acid Modulates DNA Damage Response and the Expression of the VEGF-A and MKI67 Genes in ARPE-19 Cells Subjected to Oxidative Stress

    No full text
    Age-related macular degeneration (AMD) is characterized by the progressive degradation of photoreceptors and retinal pigment epithelium (RPE) cells. ARPE-19 is an RPE cell line established as an in vitro model for the study of AMD pathogenesis. Oxidative stress is an AMD pathogenesis factor that induces DNA damage. Thus, the oxidative stress-mediated DNA damage response (DDR) of ARPE-19 cells can be important in AMD pathogenesis. The metabolism of retinoids—which regulates cell proliferation, differentiation, and the visual cycle in the retina—was reported to be disturbed in AMD patients. In the present work, we studied the effect of all-trans retinoic acid (ATRA, a retinoid) on DDR in ARPE-19 cells subjected to oxidative stress. We observed that ATRA increased the level of reactive oxygen species (ROS), alkali-labile sites in DNA, DNA single-strand breaks, and cell death evoked by oxidative stress. ATRA did not modulate DNA repair or the distribution of cells in cell cycle in the response of ARPE-19 cells to oxidative stress. ATRA induced autophagy in the absence of oxidative stress, but had no effect on this process in the stress. ATRA induced over-expression of proliferation marker MKI67 and neovascularization marker VEGF-A. In conclusion, ATRA increased oxidative stress in ARPE-19 cells, resulting in more lesions to their DNA and cell death. Moreover, ATRA can modulate some properties of these cells, including neovascularization, which is associated with the exudative form of AMD. Therefore, ATRA can be important in the prevention, diagnosis, and therapy of AMD

    SGLT2 Inhibitors May Restore Endothelial Barrier Interrupted by 25-Hydroxycholesterol

    No full text
    SGLT2 (Sodium-glucose Cotransporter-2) inhibitors are newer glucose-lowering drugs with many cardiovascular benefits that are not fully understood yet. Endothelial integrity plays a key role in cardiovascular homeostasis. 25-hydroxycholesterol (25-OHC), which is a proatherogenic stimuli that impairs endothelial barrier functions. VE-cadherin is an endothelial-specific protein crucial in maintaining endothelial integrity. The aim of this study was to assess the influence of SGLT2i on the integrity of endothelial cells interrupted by 25-OHC. We also aimed to evaluate whether this effect is associated with changes in the levels of VE-cadherin. We pre-incubated HUVECs with 10 μg/mL of 25-hydroxycholesterol (25-OHC) for 4 h and then removed it and incubated endothelial cells with 1 μM of empagliflozin, 1 μM canagliflozin, or 1 μM dapagliflozin for 24 h. The control group included HUVECs cultured with the medium or with 25-OHC 10 μg/mL. The integrity of endothelial cells was measured by the RTCA-DP xCELLigence system, and VE-cadherin was assessed in confocal microscopy. Our results show that SGLT2 inhibitors significantly increase endothelial integrity in comparison to medium controls, and they improve endothelial cell integrity interrupted by 25-OHC. This effect is associated with significant improvements in VE-cadherin levels. SGLT2i: empagliflozin, canagliflozin, and dapagliflozin have a beneficial effect on the endothelial cell integrity and VE-cadherin levels reduced by 25-OHC
    corecore