2,175 research outputs found

    Dual geometries and spacetime singularities

    Get PDF
    The notion of geometrical duality is discussed in the context of both Brans-Dicke theory and general relativity. It is shown that, in some particular solutions, the spacetime singularities that arise in usual Riemannian general relativity may be avoided in its dual representation (Weyl-type general relativity). This dual representation provides a singularity-free picture of the World that is physicaly equivalent to the canonical general relativistic one.Comment: 11 pages, LaTeX, no figures, version accepted for publication in PR

    Gravitational memory of natural wormholes

    Get PDF
    A traversable wormhole solution of general scalar-tensor field equations is presented. We have shown, after a numerical analysis for the behavior of the scalar field of Brans-Dicke theory, that the solution is completely singularity--free. Furthermore, the analysis of more general scalar field dependent coupling constants indicates that the gravitational memory phenomenon may play an important role in the fate of natural wormholes.Comment: 14 pages revtex, 1 ps figur

    Usefulness of regional right ventricular and right atrial strain for prediction of early and late right ventricular failure following a left ventricular assist device implant: A machine learning approach

    Get PDF
    Background: Identifying candidates for left ventricular assist device surgery at risk of right ventricular failure remains difficult. The aim was to identify the most accurate predictors of right ventricular failure among clinical, biological, and imaging markers, assessed by agreement of different supervised machine learning algorithms. Methods: Seventy-four patients, referred to HeartWare left ventricular assist device since 2010 in two Italian centers, were recruited. Biomarkers, right ventricular standard, and strain echocardiography, as well as cath-lab measures, were compared among patients who did not develop right ventricular failure (N = 56), those with acute–right ventricular failure (N = 8, 11%) or chronic–right ventricular failure (N = 10, 14%). Logistic regression, penalized logistic regression, linear support vector machines, and naïve Bayes algorithms with leave-one-out validation were used to evaluate the efficiency of any combination of three collected variables in an “all-subsets” approach. Results: Michigan risk score combined with central venous pressure assessed invasively and apical longitudinal systolic strain of the right ventricular–free wall were the most significant predictors of acute–right ventricular failure (maximum receiver operating characteristic–area under the curve = 0.95, 95% confidence interval = 0.91–1.00, by the naïve Bayes), while the right ventricular–free wall systolic strain of the middle segment, right atrial strain (QRS-synced), and tricuspid annular plane systolic excursion were the most significant predictors of Chronic-RVF (receiver operating characteristic–area under the curve = 0.97, 95% confidence interval = 0.91–1.00, according to naïve Bayes). Conclusion: Apical right ventricular strain as well as right atrial strain provides complementary information, both critical to predict acute–right ventricular failure and chronic–right ventricular failure, respectively

    Embeddings in Spacetimes Sourced by Scalar Fields

    Full text link
    The extension of the Campbell-Magaard embedding theorem to general relativity with minimally-coupled scalar fields is formulated and proven. The result is applied to the case of a self-interacting scalar field for which new embeddings are found, and to Brans-Dicke theory. The relationship between Campbell-Magaard theorem and the general relativity, Cauchy and initial value problems is outlined.Comment: RevTEX (11 pages)/ To appear in the Journal of Mathematical Physic

    Can electro-magnetic field, anisotropic source and varying Λ\Lambda be sufficient to produce wormhole spacetime ?

    Full text link
    It is well known that solutions of general relativity which allow for traversable wormholes require the existence of exotic matter (matter that violates weak or null energy conditions [WEC or NEC]). In this article, we provide a class of exact solution for Einstein-Maxwell field equations describing wormholes assuming the erstwhile cosmological term Λ\Lambda to be space variable, viz., Λ=Λ(r)\Lambda = \Lambda (r). The source considered here not only a matter entirely but a sum of matters i.e. anisotropic matter distribution, electromagnetic field and cosmological constant whose effective parts obey all energy conditions out side the wormhole throat. Here violation of energy conditions can be compensated by varying cosmological constant. The important feature of this article is that one can get wormhole structure, at least theoretically, comprising with physically acceptable matters.Comment: Some changes have been mad

    Classical Euclidean wormhole solutions in Palatini f(R~)f(\tilde{R}) cosmology

    Full text link
    We study the classical Euclidean wormholes in the context of extended theories of gravity. With no loss of generality, we use the dynamical equivalence between f(R~)f(\tilde{R}) gravity and scalar-tensor theories to construct a point-like Lagrangian in the flat FRW space time. We first show the dynamical equivalence between Palatini f(R~)f(\tilde{R}) gravity and the Brans-Dicke theory with self-interacting potential, and then show the dynamical equivalence between the Brans-Dicke theory with self-interacting potential and the minimally coupled O'Hanlon theory. We show the existence of new Euclidean wormhole solutions for this O'Hanlon theory and, for an special case, find out the corresponding form of f(R~)f(\tilde{R}) having wormhole solution. For small values of the Ricci scalar, this f(R~)f(\tilde{R}) is in agreement with the wormhole solution obtained for higher order gravity theory R~+ϵR~2,ϵ<0\tilde{R}+\epsilon \tilde{R}^2,\epsilon<0.Comment: 11 page

    Brans-Dicke wormholes in the Jordan and Einstein frames

    Get PDF
    We examine the possibility of static wormhole solutions in the vacuum Brans-Dicke theory both in the original (Jordan) frame and in the conformally rescaled (Einstein) frame. It turns out that, in the former frame, wormholes exist only in a very narrow interval of the coupling parameter, viz., -3/2<omega<-4/3. It is shown that these wormholes are not traversable in practice. In the latter frame, wormhole solutions do not exist at all unless energy conditions are violated by hand.Comment: Minor errors corrected, uploaded for the benefit of the researcher

    On a class of stable, traversable Lorentzian wormholes in classical general relativity

    Get PDF
    It is known that Lorentzian wormholes must be threaded by matter that violates the null energy condition. We phenomenologically characterize such exotic matter by a general class of microscopic scalar field Lagrangians and formulate the necessary conditions that the existence of Lorentzian wormholes imposes on them. Under rather general assumptions, these conditions turn out to be strongly restrictive. The most simple Lagrangian that satisfies all of them describes a minimally coupled massless scalar field with a reversed sign kinetic term. Exact, non-singular, spherically symmetric solutions of Einstein's equations sourced by such a field indeed describe traversable wormhole geometries. These wormholes are characterized by two parameters: their mass and charge. Among them, the zero mass ones are particularly simple, allowing us to analytically prove their stability under arbitrary space-time dependent perturbations. We extend our arguments to non-zero mass solutions and conclude that at least a non-zero measure set of these solutions is stable.Comment: 23 pages, 4 figures, uses RevTeX4. v2: Changes to accommodate added references. Statement about masses of the wormhole correcte

    A quantum-like description of the planetary systems

    Full text link
    The Titius-Bode law for planetary distances is reviewed. A model describing the basic features of this rule in the "quantum-like" language of a wave equation is proposed. Some considerations about the 't Hooft idea on the quantum behaviour of deterministic systems with dissipation are discussed.Comment: LaTex file, 17 pages, no figures. Version published in Foundations of Physics, August 200
    • …
    corecore