257 research outputs found
The renal lesions that develop in neonatal mice during angiotensin inhibition mimic obstructive nephropathy
The renal lesions that develop in neonatal mice during angiotensin inhibition mimic obstructive nephropathy.BackgroundInhibition of angiotensin action, pharmacologically or genetically, during the neonatal period leads to renal anomalies involving hypoplastic papilla and dilated calyx. Recently, we documented that angiotensinogen (Agt -/-) or angiotensin type 1 receptor nullizygotes (Agtr1 -/-) do not develop renal pelvis nor ureteral peristaltic movement, both of which are essential for isolating the kidney from the high downstream ureteral pressure. We therefore examined whether these renal anomalies could be characterized as “obstructive” nephropathy.MethodsAgtr1 -/- neonatal mice were compared with wild-type neonates, the latter subjected to surgical complete unilateral ureteral ligation (UUO), by analyzing morphometrical, immunohistochemical, and molecular indices. Agtr1 -/- mice were also subjected to a complete UUO and were compared with wild-type UUO mice by quantitative analysis. To assess the function of the urinary tract, baseline pelvic and ureteral pressures were measured.ResultsThe structural anomalies were qualitatively indistinguishable between the Agtr1 -/- without surgical obstruction versus the wild type with complete UUO. Thus, in both kidneys, the calyx was enlarged, whereas the papilla was atrophic; tubulointerstitial cells underwent proliferation and also apoptosis. Both were also characterized by interstitial macrophage infiltration and fibrosis, and within the local lesion, transforming growth factor-β1, platelet-derived growth factor-A, and insulin-like growth factor-1 were up-regulated, whereas epidermal growth factor was down-regulated. Moreover, quantitative differences that exist between mutant kidneys without surgical obstruction and wild-type kidneys with surgical UUO were abolished when both underwent the same complete surgical UUO. The hydraulic baseline pressure was always lower in the pelvis than that in the ureter in the wild type, whereas this pressure gradient was reversed in the mutant.ConclusionThe abnormal kidney structure that develops in neonates during angiotensin inhibition is attributed largely to “functional obstruction” of the urinary tract caused by the defective development of peristaltic machinery
Complement activation retards resolution of acute ischemic renal failure in the rat
Complement activation retards resolution of acute ischemic renal failure in the rat. We investigated the role of complement activation on the resolution of acute ischemic renal failure in the rat. Acute renal failure was induced by clamping of the renal arteries of Sprague-Dawley rats for 45 minutes (Day 0). On subsequent days, groups of rats with acute renal failure were exposed to daily zymosan infusion (an activator of the complement system), or to blood incubated with cuprophane (CUP) or polyacrylonitrile (PAN) dialysis membranes. We serially measured the change in BUN daily, glomerular filtration rate and 24-hour proteinuria on Day 3 and Day 5 following ischemia. On Day 6, the animals were sacrificed and their kidneys examined histologically. Zymosan and cuprophane exposed rats had a significant delay in the recovery of renal failure, reduced glomerular filtration rate, and histologically had more neutrophil infiltration than control or PAN exposed animals. To investigate the potential pathophysiology of these observations, we assessed the response of zymosan-exposed rats to infusion of deferoxamine (DFO), a potent inhibitor of hydroxyl radical formation (OH•). Infusion of DFO prior to zymosan significantly improved recovery of renal function. We also measured urinary thromboxane B2 levels in these groups of rats. While the groups of rats exposed to zymosan had the highest levels of thromboxane B2, these levels were not different between the groups exposed to zymosan alone, or to zymosan and DFO. These observations suggest a role for hydroxyl radicals in the prolongation of renal failure in this model. Taken together, these findings may have implications for the dialytic intervention in patients with acute renal failure
Generation of a core set of items to develop classification criteria for Scleroderma renal crisis using consensus methodology
BACKGROUND
This project was undertaken to generate a core set of items to develop classification criteria for scleroderma renal crisis (SRC) using consensus methodology.
METHODS
An international, multidisciplinary panel of experts was invited to participate in a 3-round Delphi exercise developed using a survey based on items identified by a scoping review. In Round 1, participants were asked to identify omissions and clarify ambiguities regarding the items in the survey. In Round 2, participants were asked to rate the validity and feasibility of the items using Likert-type scales ranging from 1-9 (1= very invalid/unfeasible, 5 = uncertain, 9 = very valid/feasible). In Round 3, participants reviewed the results and comments of Round 2, and were asked to provide final ratings. Items rated as highly valid and feasible (both median scores ≥7) in Round 3 were selected as the provisional core set of items. A consensus meeting using nominal group technique (NGT) followed to further reduce the core set of items.
RESULTS
Ninety-nine experts from 16 countries participated in the Delphi exercise. Of the 31 items in the survey, consensus was achieved on 13, including hypertension, renal insufficiency, proteinuria and hemolysis. Eleven experts took part in the NGT discussion, where consensus was achieved in 5 domains: blood pressure, acute kidney injury, microangiopathic hemolytic anemia, target organ dysfunction, and renal histopathology.
CONCLUSIONS
A core set of items that characterize SRC was identified using consensus methodology. This core set will be used in future data-driven phases of this project to develop classification criteria for SRC. This article is protected by copyright. All rights reserved
Plasminogen activator inhibitor-1 expression is regulated by the angiotensin type 1 receptor in vivo1
Plasminogen activator inhibitor-1 expression is regulated by the angiotensin type 1 receptor in vivo.BackgroundThe fibrinolytic system plays an important role in degrading fibrin-rich thrombi and in vascular and tissue remodeling. Elevated levels of plasminogen activator inhibitor-1 (PAI-1) can reduce the efficiency of the endogenous fibrinolytic system. Angiotensin (Ang) has been shown to regulate PAI-1 expression via the Ang type 1 (AT1) receptor in some tissues and via the AT4 receptor in cultured endothelium. The purpose of this study was to examine the tissue-specific pattern of PAI-1 expression in response to infusion of Ang II in vivo.MethodsAdult male Sprague-Dawley rats (N = 5 in each group) were treated with four hours of intravenous infusions of Ang II or vehicle control while mean arterial pressure (MAP) was monitored: group 1, 600 ng/kg/min Ang II; group 2, Ang II + 10 mg/kg of the AT1 receptor antagonist (AT1RA) L158-809 q2 hour; group 3, Ang II + 0.01 to 0.1 mg/kg hydralazine as required to maintain normal blood pressure; and group 4, saline-infused controls. After infusion, tissue was harvested for Northern blotting, immunohistochemical analysis, and in situ hybridization.ResultsIn group 1, Ang II infusion increased MAP from 105 ± 8 to 160 ± 9 mm Hg (mean ± SE, P < 0.01). Ang II induced increased expression of PAI-1 mRNA in all tissues examined from 5.1-fold in the heart, 9.7-fold in the kidney, 10.0-fold in the aorta, and up to 30.0-fold in the liver (all P < 0.01 vs. control). While both AT1RA (group 3) and hydralazine (group 4) prevented Ang II-induced elevation in blood pressure, the Ang II-dependent expression of PAI-1 mRNA was reduced by only AT1 receptor blockade.ConclusionsWe conclude that in the rat, PAI-1 is induced in a variety of tissues by Ang II directly through the AT1 receptor, independent of its effects on blood pressure
Mineralocorticoid Receptor Blocker Protects against Podocyte-Dependent Glomerulosclerosis
Background: We previously showed that angiotensin type 1 receptor (AT1) blocker (ARB) attenuates glomerular injury in Nphs1-hCD25 (NEP25) transgenic mice, a model of selective podocyte injury. However, subsequent studies in NEP25 mice with podocyte-specific deficiency of AT1 revealed that the protective effects of ARB are not through the podocyte AT1, thereby raising the possibility that the protective effects of ARB involve mineralocorticoids. Methods: NEP25 mice were treated with the mineralocorticoid receptor blocker (MRB) spironolactone (25 mg/kg/day, n = 10), the ARB losartan (250 mg/kg/day, n = 11), both (ARB+MRB, n = 8) or vehicle (Vehicle, n = 9) from day –7 to day 9 of induction of podocyte injury. Results: Although MRB did not reduce systolic blood pressure or proteinuria, addition of MRB to ARB significantly attenuated glomerulosclerosis (glomerulosclerosis index: ARB+MRB 1.67 ± 0.19 vs. MRB 2.01 ± 0.29, ARB 2.35 ± 0.19, and Vehicle 2.25 ± 0.26, p Conclusion: These data suggest that, while MRB does not attenuate proteinuria caused by podocyte-specific injury, it provides protective effects against glomerulosclerosis that is independent of systemic blood pressure
Angiotensinogen gene null-mutant mice lack homeostatic regulation of glomerular filtration and tubular reabsorption
Angiotensinogen gene null-mutant mice lack homeostatic regulation of glomerular filtration and tubular reabsorption. Chronic volume depletion by dietary salt restriction causes marked decrease in glomerular filtration rate (GFR) with little increase in urine osmolality in angiotensinogen gene null mutant (Agt−/−) mice. Moreover, urine osmolality is insensitive to both water and vasopressin challenge. In contrast, in normal wild-type (Agt+/+) mice, GFR remains remarkably constant and urine osmolality is adjusted promptly. Changes in volume status also cause striking divergence in renal structure between Agt−/− and Agt+/+ mice. Thus, in contrast to the remarkably stable glomerular size of Agt+/+ mice, glomeruli of Agt−/− mice are atrophied during a low salt and hypertrophied during a high salt diet. Moreover, the renal papilla, a structure unique to mammals and essential for urine diluting and concentrating mechanisms, is hypoplastic in Agt−/− mice. Thus, angiotensin is essential for the two fundamental homeostatic functions of the mammalian kidney, namely stable GFR and high urine diluting and concentrating capacity during alteration in extracellular fluid (ECF) volume. This is not only accompanied by angiotensin’s tonic effects on renal vasomotor tone and tubule transporters, but also accomplished through its capacity to affect the structure of both the glomerulus and the papilla directly or indirectly
Strategic locus for the activation of the superoxide dismutase gene in the nephron
Strategic locus for the activation of the superoxide dismutase gene in the nephron. Upon exposure to a transient ischemia, the distal tubule of the kidney often escapes the severe damage which afflicts the proximal tubule. To ascertain whether this feature of the distal tubule is attributable to its intrinsic cellular properties, we focused on two pairs of unique tubule segments; distal versus proximal convoluted tubules in the superficial cortex and distal versus proximal straight tubules in the outer stripe of the outer medulla. These tubules were chosen because, firstly, they can be identified by morphology and immunostaining, and secondly, each pair has the same anatomical relationship to the circulation. Detailed morphometric analyses were performed six hours following unilateral transient ischemia in adult rats to semiquantitate the local tissue damage in these specific nephron segments. The architecture of the distal convoluted and straight tubules was remarkably well preserved, contrasting to the moderate to extensive necrotic changes seen in the proximal tubules. In search of the potential intrinsic cellular mechanism that underlies the observed difference, we examined the segmental distribution along the nephron of manganese superoxide dismutase gene transcripts by in situ hybridization. This antioxidant enzyme gene was expressed primarily in the distal tubules with contrastingly low levels of expression in the proximal tubules. Moreover, following ischemia-reperfusion, this distal tubule-dominant pattern was further accentuated immediately following reperfusion. The study indicates that the marked difference between the proximal and distal tubules in their susceptibility to injury in vivo is attributable to their intrinsic cellular properties, which include the local level of antioxidants
CircleSnake: Instance Segmentation with Circle Representation
Circle representation has recently been introduced as a medical imaging
optimized representation for more effective instance object detection on
ball-shaped medical objects. With its superior performance on instance
detection, it is appealing to extend the circle representation to instance
medical object segmentation. In this work, we propose CircleSnake, a simple
end-to-end circle contour deformation-based segmentation method for ball-shaped
medical objects. Compared to the prevalent DeepSnake method, our contribution
is three-fold: (1) We replace the complicated bounding box to octagon contour
transformation with a computation-free and consistent bounding circle to circle
contour adaption for segmenting ball-shaped medical objects; (2) Circle
representation has fewer degrees of freedom (DoF=2) as compared with the
octagon representation (DoF=8), thus yielding a more robust segmentation
performance and better rotation consistency; (3) To the best of our knowledge,
the proposed CircleSnake method is the first end-to-end circle representation
deep segmentation pipeline method with consistent circle detection, circle
contour proposal, and circular convolution. The key innovation is to integrate
the circular graph convolution with circle detection into an end-to-end
instance segmentation framework, enabled by the proposed simple and consistent
circle contour representation. Glomeruli are used to evaluate the performance
of the benchmarks. From the results, CircleSnake increases the average
precision of glomerular detection from 0.559 to 0.614. The Dice score increased
from 0.804 to 0.849. The code has been released:
https://github.com/hrlblab/CircleSnakeComment: Machine Learning in Medical Imaging Workshop for 2022 MICCA
- …