4 research outputs found

    Study of a Molten Carbonate Fuel Cell Combined Heat, Hydrogen and Power System: End-Use Application

    Get PDF
    To address the problem of fossil fuel usage and high greenhouse gas emissions at the Missouri University of Science and Technology campus, using of alternative fuels and renewable energy sources can lower energy consumption and greenhouse gas emissions. Biogas, produced by anaerobic digestion of wastewater, organic waste, agricultural waste, industrial waste, and animal by-products is a potential source of renewable energy. In this work, we have discussed the design of CHHP system for the campus using local resources. An energy flow and resource availability study is performed to identify the type and source of feedstock required to continuously run the fuel cell system at peak capacity. Following the resource assessment study, the team selects FuelCell Energy DFC1500™ unit as a molten carbonate fuel cell. The CHHP system provides electricity to power the university campus, thermal energy for heating the anaerobic digester, and hydrogen for transportation, back-up power and other needs. In conclusion, the CHHP system will be able to reduce fossil fuel usage, and greenhouse gas emissions at the university campus

    Study of energy recovery and power generation from alternative energy source

    Get PDF
    The energy requirement pattern of world is growing up and developing technology. The available sources, while exhausting and not friendly to the environment, are highly used. Looking at partial supply and different options of environment problems associated with usage, renewable energy sources are getting attention. MSW (Municipal solid waste) composition data had been collected from 1997 to 2009, in Benghazi Libya, to evaluate the waste enthalpy. An incinerator with capacity of 47,250 kg/h was confirmed to burn all the quantity of waste generated by the city through the next 15 years. Initial study was performed to investigate energy flow and resource availability to insure sustainable MSW required by the incinerator to work at its maximum capacity during the designated period. The primary purpose of the paper is to discuss the design of Rankin steam cycle for the generation of both power (PG) and combined heat power (CHP). In the power generation case, the system was found to be able to generate electrical power of 13.1 MW. Including the combined heat power case, the results showed that the system was able to produce 6.8 million m3/year of desalinated water and generate 11.33 MW of electricity. In conclusion, the CHP designed system has the greatest potential to maximize energy saving, due to the optimal combination of heat production and electricity generation

    Study of a Molten Carbonate Fuel Cell Combined Heat, Hydrogen and Power System: Energy Analysis

    No full text
    Countries around the world are trying to use alternative fuels and renewable energy to reduce the energy consumption and greenhouse gas emissions. Biogas contains methane is considered a potential source of clean renewable energy. This paper discusses the design of a combined heat, hydrogen and power system, which generated by methane with use of Fuelcell, for the campus of Missouri University of Science and Technology located in Rolla, Missouri, USA. An energy flow and resource availability study was performed to identify sustainable type and source of feedstock needed to run the Fuelcell at its maximum capacity. FuelCell Energy\u27s DFC1500 unit (a molten carbonate Fuelcell) was selected as the Fuelcell for the tri-generation (heat, hydrogen and electric power) system. This tri-generation system provides electric power to the campus, thermal energy for heating the anaerobic digester, and hydrogen for transportation, backup power and other applications on the campus. In conclusion, the combined heat, hydrogen and power system reduces fossil fuel usage, and greenhouse gas emissions at the university campus

    Hydrogen Recovery, Cleaning, Compression, Storage, Dispensing, Distribution System and End-Uses on the University Campus from Combined Heat, Hydrogen and Power System

    No full text
    To address the problem of fossil fuel usage at the Missouri University of Science and Technology campus, using of alternative fuels and renewable energy sources can lower energy consumption and hydrogen use. Biogas, produced by anaerobic digestion of wastewater, organic waste, agricultural waste, industrial waste, and animal by-products is a potential source of renewable energy. In this work, we have discussed the design of combined heat, hydrogen and power (CHHP) system for the campus using local resources. An energy flow and resource availability study is hydrogen recovery, cleaning and energy End-Uses on the university campus from CHHP system. Following the resource assessment study, our team selects Fuel Cell Energy direct fuel cell (DFC) 1500TM unit as a molten carbonate fuel cell. The CHHP system provides the hydrogen for transportation, back-up power and other needs. The research presented in this paper was performed as part of the 2012 Hydrogen Student Design Contest. In conclusion, the CHHP system will be able to reduce fossil fuel usage, greenhouse gas (GHG) emissions and hydrogen generated is used to power different applications on the university campus
    corecore