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a b s t r a c t

To address the problem of fossil fuel usage and high greenhouse gas emissions at the
Missouri University of Science and Technology campus, using of alternative fuels and
renewable energy sources can lower energy consumption and greenhouse gas emissions.
Biogas, produced by anaerobic digestion of wastewater, organic waste, agricultural waste,
industrial waste, and animal by-products is a potential source of renewable energy. In this
work, we have discussed the design of CHHP system for the campus using local resources.
An energy flow and resource availability study is performed to identify the type and
source of feedstock required to continuously run the fuel cell system at peak capacity.
Following the resource assessment study, the team selects FuelCell Energy DFC1500™ unit
as a molten carbonate fuel cell. The CHHP system provides electricity to power the
university campus, thermal energy for heating the anaerobic digester, and hydrogen for
transportation, back-up power and other needs. In conclusion, the CHHP system will be
able to reduce fossil fuel usage, and greenhouse gas emissions at the university campus.

& 2013 The Authors. Published by Elsevier Ltd.

1. Introduction

The Missouri University of Science and Technology (Missouri S&T) campus in Rolla, Missouri, USA is a relatively small
campus with 1.15 km2 and approximately 6500 students on campus. The university is one of the City of Rolla's largest
electric power consumers with a peak demand of 6.36 MWe and annual electric energy consumption of 2.55�106 kWh/yr.
Currently, electrical power for the university campus is purchased from RMU and distributed from the substation and
switchgear located at the campus power plant. In addition, the university thermal power plant generates electricity with a
back pressure steam turbine, accounting for an additional 10% of electricity. Biogas produced by anaerobic digestion of
wastewater, organic waste, agricultural waste, and industrial waste is a potential source of renewable energy. Treated biogas
can be used to generate CHHP using a molten carbonate fuel cell. The power generated by the CHHP system is used at
various locations on the campus to reduce the total electric power purchased and minimize air pollution [1–3]. In addition,
the CHHP system has higher efficiency than other distributed generation plants of similar size [4,5]. The hydrogen generated
is used to power different applications on the university campus including personal transportation [6,7]. The research
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presented in this paper was performed as part of the 2012 Hydrogen Student Design Contest. The contest rules specified the
use of FuelCell Energy fuel cell and biogas with 60% methane and 40% carbon dioxide concentration. An energy flow and
resource availability study was performed to identify the type and source of feedstock required to continuously run the
CHHP system to produce maximum capacity of electricity, heat recovery and hydrogen [8].

2. Resource assessment

2.1. Feedstock source identification

During the assessment, “locally available feedstock”was defined as one which is within 20 km of Rolla. The largest source
of locally available feedstock is MSW averaging 60 t/day. Of this, approximately 33% is organic waste including 17% food
waste. The campus plans to partner with the City of Rolla and will start an “Organic Waste Collection Program” to collect
organic waste. Food waste collected daily is mixed with the trash and the sanitary sewer and is connected to the city's main
sewer lines.

3. Experimental procedure

3.1. CHHP system technical design

The design discussed in this paper has three major systems: (i) anaerobic digestion system, (ii) CHHP system consisting of a DFC1500™ fuel cell unit,
and (iii) hydrogen compression, storage, and dispensing system [8]. These systems were designed based on the results from the feedstock assessment and
the biogas production from local resources. It was found that the anticipated methane production after biogas treatment is 260 m3/h with a heat content of
156 MJ/m3.

The anaerobic digestion system and the CHHP system are sized based on the amount of locally available feedstock and the amount of methane gas
generated respectively [9]. The hydrogen recovery, purification, compression, storage, and distribution system are designed based on the hydrogen demand
on the university campus and the 65% fuel utilization rate [10,11].

3.2. Anaerobic digestion, gas treatment system and fuel storage

Digester and biogas production are shown in Fig. 1 [9]. The feedstock from the cement storage bin is transported via a screw feeder to a hygienisation
unit where it is heated to 70 1C for 1 h to remove all the pathogens [12]. After heating, the feedstock is transported to a 45.4 m3 equalization tank where the
biomass is mixed to form a homogenous mixture before being fed into the digester [13]. Biogas from the anaerobic digestion is stored in a buffer tank
which supplies biogas to the gas treatment system. The treatment system uses pressure swing adsorption (PSA) technology to separate methane present in
the biogas [14–18].

Nomenclature

CHHP combined heat, hydrogen and power system
DFC direct fuel cell
MSW municipal solid waste
RMU Rolla municipal utilities
MTNF mark twain national forest
AOG anode outlet gas

HEX.W.G heat exchanger water and gas
AGO anode gas oxidizer
E-BOP electrical balance of the plant
MBOP mechanical balance of the plant
CHP combined heat and power
UPS uninterruptable power supply
VS volatile solids
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material
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Solid separator 
screw press for 
liquid removal
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Fig. 1. Flow diagram for digester and biogas production.
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3.3. DFC1500™ FuelCell power plant

The anaerobic digester system will be able to supply 90% of fuel for the DFC1500™ unit from locally available feedstock. The remaining 10% fuel
required will be purchased from the utility company. In order to accommodate the fluctuations in gas quality, the natural gas used in the design contains
98% methane and 2% carbon dioxide (with an average heating value of 156 MJ/m3). Fig. 2 shows the reactions taking place inside the fuel cell.

3.3.1. AOG calculations
The anode outlet gas calculations are made based on the following AOG composition calculation document provided by FuelCell Energy [19].

CH4þ2H2O-4H2þCO2 (1)

Assuming 1 mol of CH4 is fed to the DFCs system; only 65% of the hydrogen (i.e. 2.6 mol) reacts at the anode and will result in the following equation.
Corresponding reaction at anode:

2:6H2þ2:6CO3
2�-2:6H2Oþ2:6CO2þ2e� ð2Þ

The remaining 35% of the H2 (1.4 mol) and the entire CO2 (1 mol) from Eq. (1) goes directly to the AOG. Combining the products from (2) and 1.4 mol
of H2 and 1 mol of CO2 from (1) results in the following AOG composition.

1.4H2þ2.6H2Oþ3.6CO2 (3)

But in reality, another internal reaction takes place in the DFCs fuel cell. One third of the H2 in Eq. (3) (i.e. 0.47 mol) needs to back-shifted to H2O
and CO resulting in Eq. (4).

0.47H2þ0.47CO2-0.47H2Oþ0.47CO (4)

Combining Eqs. (3) and (4) yields the following products:

0.93H2þ3.07H2Oþ0.47COþ3.13CO2 (5)

Hence for every 1 mol of CH4 the following AOG composition is obtained as on a molar percentage basis H2O, CO2, CO, and H2 are 40.4, 41.2, 6.2, and
12.2 respectively with assuming 100% CH4. The inlet fuel requirement of the DFC1500™ unit based on 156 MJ/m3 input fuel is calculated and found to be
286 m3/h consists of 198 mol of CH4 and 4 mol of CO2. The actual AOG flowrate of methane (mol/min) for H2, H2O, CO, and CO2 is calculated using Eq. (5)
are 156.5, 516.8, 79.1 and 526.9 respectively.

3.3.2. Hydrogen recovery and cleaning system
In order to achieve a CHHP system, hydrogen from the AOG must be recovered, cleaned and distributed. The details of the hydrogen recovery and

purification process are shown in Fig. 3. The AOG outlet pressure is 1.08 bar and outlet temperature to be 600 1C.

H2OþCO-H2þCO2 (6)

The entire CO present in the AOG reacts with H2O to produce an additional 242 kg of H2 and of 4�103 kg of CO2 per day. The water vapor is condensed
and recycled to the anode side of the fuel cell for the internal reforming of methane. The amount of water produced during condensation is greater than the
fuel cell requirement with the excess water is sent into the sewer. The CO2 and H2 coming out of the water–gas shift reactor is cooled and separated using a
PSA unit. The hydrogen coming out of the PSA unit is compressed and used for different applications on the university campus. Outside air is preheated
using the heat exchanger and is mixed with the CO2 coming out the PSA unit in AGO. The mixture is then transferred to the cathode to complete the
cathode reaction as shown in the following equation.

CO2þ0.5O2þ2e�-CO3 (7)

The flow rates of gases at different stages were tabulated in Table 1. These flow rates are necessary to calculate the amount of hydrogen generated,
amount of outside air needed, and amount of exhaust gas. The amount of hydrogen generated per day is 650 kg.

Fig. 2. Internal reforming DFCs technology.
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3.4. Hydrogen compression, storage, dispensing/distribution system

The system will be incorporated into the existing hydrogen infrastructure on the university campus. The existing hydrogen station was designed such
that it could handle higher volume of hydrogen in the future. The product hydrogen from the PSA unit will be transferred into the buffer tank located in the
adjacent hydrogen station via pipeline. The buffer tank feds two compressors; (i) the existing Hydro-Pac C06-10-70/140LX compressor (415 bar) and (ii) the
PDC machines (PDC-13-1000-3000) compressor (250 bar). The compressed hydrogen from the Hydro-Pac compressor will be stored in existing storage
tanks. Hydrogen from the PDC machine compressor will be used to fill a hydrogen tube trailer and K-cylinder manifold. The entire process of hydrogen
compression, storage, dispensing and distribution is shown in Fig. 4.

4. Results and discussion

4.1. Electricity use

The electric power output of the DFC1500™ unit operating in the simple cycle CHP mode is 1.4 MWe. This corresponds to
the net power after providing the parasitic loads for its MBOP and energy loss in the E-BOP. However, there are additional

Fig. 3. Hydrogen recovery and purification.

Table 1
Flow of gases at different sections of the system.

Gas HEX W.G. shift inlet
(mol/min)

HEX W.G. shift outlet
(mol/min)

PSA product outlet
(mol/min)

PSA tail gas
(mol/min)

AGO inlet
(mol/min)

Cathode exhaust
(mol/min)

H2 156.5 235.6 212 23.6 23.6 23.6
CO2 526.9 606 – 606 606 181.8
H2O 516.8 437.7 – – – –

CO 79.1 – – – – –

O2 – – – – 303 90.9
N2 – – – – 1140 1140

PSA unit

Buffer tank

250 bar 
compresso

415 bar 
compresso

Hydrogen 
storage

Hydrogen 
dispenser

Hydrogen 
bottling

Tube 
trailer

Fig. 4. Hydrogen compression, storage, and dispensing.
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components that require electric power for the DFC1500™ unit operating in CHHP mode. These components, including the
heat exchanger for anode outlet gas cooling, the water–gas shift reactor, and the PSA unit for hydrogen purification and
operate collectively with the fuel cell unit to form the CHHP system. Based on the power requirements of these components,
the net power output from the CHHP systemwas 1.1 MWe. The total electric power requirement of different equipment used
in the design is tabulated in Table 2.

The total net energy production from the CHHP system is 26.4�103 kWh per day and the energy demand for on-site use
is 4548 kWh per day. Hence, the CHHP system will be able to provide 22�103 kWh per day to the university campus.
This corresponds to 27% of the whole campus electricity requirement.

4.2. Thermal and hydrogen use

The DFC1500™ unit has 4 GJ/h at 322 K available for heat recovery while operating in CHP mode. The thermal energy
available for heat recovery was calculated based on the cathode exhaust gas composition in Table 3 and Eq. (8) and is shown
in Table 3. The temperature difference of the input and output temperature of the heat recovery system is 320 K [20].

Q¼mCP(ΔT) (8)

where m, CP and ΔT are the mass flow rate of the gas (kg/h), the specific heat of the gas (kJ/kg K) and the change
in temperature of the gas (K) respectively.

The hydrogen usage (kg/day) on the university campus including personal transportation applications, backup power
applications, portable power applications, and other mobility applications are 56, 16, 29, 17, and 5 respectively. The different
applications, potential users, and total hydrogen usage per day (123 kg/day) are shown in Fig. 5.

5. Conclusion

In this paper, we have discussed the design of a CHHP system for the Missouri S&T campus using local resources.
Following the resource assessment study, the team selects FuelCell Energy DFC1500™ unit for its fuel cell. The CHHP system
provides electricity to power the university campus, thermal energy for heating the anaerobic digester, and hydrogen for
transportation, back-up power and other needs. The CHHP system will be able to provide approximately 22,000 kWh and
650 kg of hydrogen to the university campus per day. In conclusion, the CHHP systemwill reduce energy consumption, fossil
fuel usage, and greenhouse gas (GHG) emissions at the Missouri S&T campus. It will be able to provide approximately 27% of
the university campus’ electricity need.

Table 2
Power demand and energy consumption.

Equipment Max. power rating (kWe) Daily operation time (h) Daily energy consumption (kWh)

Feedstock storage facility 5 12 60
Macerator 15 4 60
Screw feeder 5 4 20
Pump 75 4 300
Hygienization unit 2 4 8
Anaerobic digester 5 24 120
Storage tank 5 24 120
Biogas PSA unit 40 24 960
Hydrogen compressor Comp1 7.5 24 180
Hydrogen compressor Comp2 100 24 2.4�103

Auxiliary loads 20 16 320
Total 279.5 164 4548

Table 3
Thermal energy available for heat recovery from the DFC1500™ CHHP system.

Gas Cathode exhaust (kmol/min) Mass flow rate (kg/h) CP (kJ/kg K) ΔT (K) Q flow rate (MJ/h)

H2 0.024 2.85 14.32 322 13.1
CO2 0.18 196.5 0.84 322 53.4
O2 0.91 152.79 0.92 322 45.2
N2 1.14 2188.28 1.04 322 732.8
Total 2540 844.6
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