10 research outputs found

    Magnetohydrodynamic equilibria of a cylindrical plasma with poloidal mass flow and arbitrary cross section shape

    Full text link
    The equilibrium of a cylindrical plasma with purely poloidal mass flow and cross section of arbitrary shape is investigated within the framework of the ideal MHD theory. For the system under consideration it is shown that only incompressible flows are possible and, conscequently, the general two dimensional flow equilibrium equations reduce to a single second-order quasilinear partial differential equation for the poloidal magnetic flux function ψ\psi, in which four profile functionals of ψ\psi appear. Apart from a singularity occuring when the modulus of Mach number associated with the Alfv\'en velocity for the poloidal magnetic field is unity, this equation is always elliptic and permits the construction of several classes of analytic solutions. Specific exact equlibria for a plasma confined within a perfectly conducting circular cylindrical boundary and having i) a flat current density and ii) a peaked current density are obtained and studied.Comment: Accepted to Plasma Physics & Controlled Fusion, 14 pages, revte

    Time Windows of Interneuron Development: Implications to Our Understanding of the Aetiology and Treatment of Schizophrenia

    No full text
    corecore