6 research outputs found

    Differences in COVID-19 testing and adverse outcomes by race, ethnicity, sex, and health system setting in a large diverse US cohort

    Get PDF
    Background Racial/ethnic disparities during the first six months of the COVID-19 pandemic led to differences in COVID-19 testing and adverse outcomes. We examine differences in testing and adverse outcomes by race/ethnicity and sex across a geographically diverse and system-based COVID-19 cohort collaboration. Methods Observational study among adults (≥18 years) within six US cohorts from March 1, 2020 to August 31, 2020 using data from electronic health record and patient reporting. Race/ethnicity and sex as risk factors were primary exposures, with health system type (integrated health system, academic health system, or interval cohort) as secondary. Proportions measured SARS-CoV-2 testing and positivity; attributed hospitalization and death related to COVID-19. Relative risk ratios (RR) with 95% confidence intervals quantified associations between exposures and main outcomes. Results 5,958,908 patients were included. Hispanic patients had the highest proportions of SARS-CoV-2 testing (16%) and positivity (18%), while Asian/Pacific Islander patients had the lowest portions tested (11%) and White patients had the lowest positivity rates (5%). Men had a lower likelihood of testing (RR = 0.90 [0.89–0.90]) and a higher positivity risk (RR = 1.16 [1.14–1.18]) compared to women. Black patients were more likely to have COVID-19-related hospitalizations (RR = 1.36 [1.28–1.44]) and death (RR = 1.17 [1.03–1.32]) compared with White patients. Men were more likely to be hospitalized (RR = 1.30 [1.16–1.22]) or die (RR = 1.70 [1.53–1.89]) compared to women. These racial/ethnic and sex differences were reflected in both health system types. Conclusions This study supports evidence of disparities by race/ethnicity and sex during the COVID-19 pandemic that persisted even in healthcare settings with reduced barriers to accessing care. Further research is needed to understand and prevent the drivers that resulted in higher burdens of morbidity among certain Black patients and men

    Characterizing the neighborhood risk environment in multisite clinic-based cohort studies: A practical geocoding and data linkages protocol for protected health information

    No full text
    Background Maintaining patient privacy when geocoding and linking residential address information with neighborhood-level data can create challenges during research. Challenges may arise when study staff have limited training in geocoding and linking data, or when non-study staff with appropriate expertise have limited availability, are unfamiliar with a study’s population or objectives, or are not affordable for the study team. Opportunities for data breaches may also arise when working with non-study staff who are not on-site. We detail a free, user-friendly protocol for constructing indices of the neighborhood risk environment during multisite, clinic-based cohort studies that rely on participants’ protected health information. This protocol can be implemented by study staff who do not have prior training in Geographic Information Systems (GIS) and can help minimize the operational costs of integrating geographic data into public health projects. Methods This protocol demonstrates how to: (1) securely geocode patients’ residential addresses in a clinic setting and match geocoded addresses to census tracts using Geographic Information System software (Esri, Redlands, CA); (2) ascertain contextual variables of the risk environment from the American Community Survey and ArcGIS Business Analyst (Esri, Redlands, CA); (3) use geoidentifiers to link neighborhood risk data to census tracts containing geocoded addresses; and (4) assign randomly generated identifiers to census tracts and strip census tracts of their geoidentifiers to maintain patient confidentiality. Results Completion of this protocol generates three neighborhood risk indices (i.e., Neighborhood Disadvantage Index, Murder Rate Index, and Assault Rate Index) for patients’ coded census tract locations. Conclusions This protocol can be used by research personnel without prior GIS experience to easily create objective indices of the neighborhood risk environment while upholding patient confidentiality. Future studies can adapt this protocol to fit their specific patient populations and analytic objectives

    Characterizing the neighborhood risk environment in multisite clinic-based cohort studies: A practical geocoding and data linkages protocol for protected health information.

    No full text
    BackgroundMaintaining patient privacy when geocoding and linking residential address information with neighborhood-level data can create challenges during research. Challenges may arise when study staff have limited training in geocoding and linking data, or when non-study staff with appropriate expertise have limited availability, are unfamiliar with a study's population or objectives, or are not affordable for the study team. Opportunities for data breaches may also arise when working with non-study staff who are not on-site. We detail a free, user-friendly protocol for constructing indices of the neighborhood risk environment during multisite, clinic-based cohort studies that rely on participants' protected health information. This protocol can be implemented by study staff who do not have prior training in Geographic Information Systems (GIS) and can help minimize the operational costs of integrating geographic data into public health projects.MethodsThis protocol demonstrates how to: (1) securely geocode patients' residential addresses in a clinic setting and match geocoded addresses to census tracts using Geographic Information System software (Esri, Redlands, CA); (2) ascertain contextual variables of the risk environment from the American Community Survey and ArcGIS Business Analyst (Esri, Redlands, CA); (3) use geoidentifiers to link neighborhood risk data to census tracts containing geocoded addresses; and (4) assign randomly generated identifiers to census tracts and strip census tracts of their geoidentifiers to maintain patient confidentiality.ResultsCompletion of this protocol generates three neighborhood risk indices (i.e., Neighborhood Disadvantage Index, Murder Rate Index, and Assault Rate Index) for patients' coded census tract locations.ConclusionsThis protocol can be used by research personnel without prior GIS experience to easily create objective indices of the neighborhood risk environment while upholding patient confidentiality. Future studies can adapt this protocol to fit their specific patient populations and analytic objectives

    Macro-enabled excel file.

    No full text
    Macro-enabled Excel file that can be used to (1) Link census tracts containing patient geocoded addresses to indicators of neighborhood crime and socioeconomic disadvantage using the census tract geoidentifier, and (2) Assign randomly generated identification numbers to census tracts and strip them of geoidentifiers to maintain patient confidentiality. (XLSM)</p
    corecore