7 research outputs found

    Intravenous Inoculation of a Bat-Associated Rabies Virus Causes Lethal Encephalopathy in Mice through Invasion of the Brain via Neurosecretory Hypothalamic Fibers

    Get PDF
    The majority of rabies virus (RV) infections are caused by bites or scratches from rabid carnivores or bats. Usually, RV utilizes the retrograde transport within the neuronal network to spread from the infection site to the central nervous system (CNS) where it replicates in neuronal somata and infects other neurons via trans-synaptic spread. We speculate that in addition to the neuronal transport of the virus, hematogenous spread from the site of infection directly to the brain after accidental spill over into the vascular system might represent an alternative way for RV to invade the CNS. So far, it is unknown whether hematogenous spread has any relevance in RV pathogenesis. To determine whether certain RV variants might have the capacity to invade the CNS from the periphery via hematogenous spread, we infected mice either intramuscularly (i.m.) or intravenously (i.v.) with the dog-associated RV DOG4 or the silver-haired bat-associated RV SB. In addition to monitoring the progression of clinical signs of rabies we used immunohistochemistry and quantitative reverse transcription polymerase chain reaction (qRT-PCR) to follow the spread of the virus from the infection site to the brain. In contrast to i.m. infection where both variants caused a lethal encephalopathy, only i.v. infection with SB resulted in the development of a lethal infection. While qRT-PCR did not reveal major differences in virus loads in spinal cord or brain at different times after i.m. or i.v. infection of SB, immunohistochemical analysis showed that only i.v. administered SB directly infected the forebrain. The earliest affected regions were those hypothalamic nuclei, which are connected by neurosecretory fibers to the circumventricular organs neurohypophysis and median eminence. Our data suggest that hematogenous spread of SB can lead to a fatal encephalopathy through direct retrograde invasion of the CNS at the neurovascular interface of the hypothalamus-hypophysis system. This alternative mode of virus spread has implications for the post exposure prophylaxis of rabies, particularly with silver-haired bat-associated RV

    Barriers of attendance to dog rabies static point vaccination clinics in Blantyre, Malawi

    Get PDF
    <div><p>Rabies is a devastating yet preventable disease that causes around 59,000 human deaths annually. Almost all human rabies cases are caused by bites from rabies-infected dogs. A large proportion of these cases occur in Sub Saharan Africa (SSA). Annual vaccination of at least 70% of the dog population is recommended by the World Health Organisation in order to eliminate rabies. However, achieving such high vaccination coverage has proven challenging, especially in low resource settings. Despite being logistically and economically more feasible than door-to-door approaches, static point (SP) vaccination campaigns often suffer from low attendance and therefore result in low vaccination coverage. Here, we investigated the barriers to attendance at SP offering free rabies vaccinations for dogs in Blantyre, Malawi. We analysed data for 22,924 dogs from a city-wide vaccination campaign in combination with GIS and household questionnaire data using multivariable logistic regression and distance estimation techniques. We found that distance plays a crucial role in SP attendance (i.e. for every km closer the odds of attending a SP point are 3.3 times higher) and that very few people are willing to travel more than 1.5 km to bring their dog for vaccination. Additionally, we found that dogs from areas with higher proportions of people living in poverty are more likely to be presented for vaccination (ORs 1.58-2.22). Furthermore, puppies (OR 0.26), pregnant or lactating female dogs (OR 0.60) are less likely to be presented for vaccination. Owners also reported that they did not attend an SP because they were not aware of the campaign (27%) or they could not handle their dog (19%). Our findings will inform the design of future rabies vaccination programmes in SSA which may lead to improved vaccination coverage achieved by SP alone.</p></div
    corecore