19 research outputs found

    The Ambiguity of Simplicity

    Full text link
    A system's apparent simplicity depends on whether it is represented classically or quantally. This is not so surprising, as classical and quantum physics are descriptive frameworks built on different assumptions that capture, emphasize, and express different properties and mechanisms. What is surprising is that, as we demonstrate, simplicity is ambiguous: the relative simplicity between two systems can change sign when moving between classical and quantum descriptions. Thus, notions of absolute physical simplicity---minimal structure or memory---at best form a partial, not a total, order. This suggests that appeals to principles of physical simplicity, via Ockham's Razor or to the "elegance" of competing theories, may be fundamentally subjective, perhaps even beyond the purview of physics itself. It also raises challenging questions in model selection between classical and quantum descriptions. Fortunately, experiments are now beginning to probe measures of simplicity, creating the potential to directly test for ambiguity.Comment: 7 pages, 6 figures, http://csc.ucdavis.edu/~cmg/compmech/pubs/aos.ht

    A Closed-Form Shave from Occam's Quantum Razor: Exact Results for Quantum Compression

    Full text link
    The causal structure of a stochastic process can be more efficiently transmitted via a quantum channel than a classical one, an advantage that increases with codeword length. While previously difficult to compute, we express the quantum advantage in closed form using spectral decomposition, leading to direct computation of the quantum communication cost at all encoding lengths, including infinite. This makes clear how finite-codeword compression is controlled by the classical process' cryptic order and allows us to analyze structure within the length-asymptotic regime of infinite-cryptic order (and infinite Markov order) processes.Comment: 21 pages, 13 figures; http://csc.ucdavis.edu/~cmg/compmech/pubs/eqc.ht

    Slipping and Rolling on an Inclined Plane

    Full text link
    In the first part of the article using a direct calculation two-dimensional motion of a particle sliding on an inclined plane is investigated for general values of friction coefficient (μ\mu). A parametric equation for the trajectory of the particle is also obtained. In the second part of the article the motion of a sphere on the inclined plane is studied. It is shown that the evolution equation for the contact point of a sliding sphere is similar to that of a point particle sliding on an inclined plane whose friction coefficient is 2/7}\ \mu. If μ>2/7tanθ\mu> 2/7 \tan\theta, for any arbitrary initial velocity and angular velocity the sphere will roll on the inclined plane after some finite time. In other cases, it will slip on the inclined plane. In the case of rolling center of the sphere moves on a parabola. Finally the velocity and angular velocity of the sphere are exactly computed.Comment: 12 pages, 3 figure

    Minimum memory for generating rare events

    Full text link
    We classify the rare events of structured, memoryful stochastic processes and use this to analyze sequential and parallel generators for these events. Given a stochastic process, we introduce a method to construct a process whose typical realizations are a given process' rare events. This leads to an expression for the minimum memory required to generate rare events. We then show that the recently discovered classical-quantum ambiguity of simplicity also occurs when comparing the structure of process fluctuations
    corecore