7 research outputs found

    1-(3,5-Dichloro­phen­yl)-3-(2-meth­oxy­phen­yl)triaz-1-ene

    Get PDF
    The title mol­ecule, C13H11Cl2N3O, is almost planar and adopts a trans conformation with respect to the –N=N– bond; the dihedral angle between the rings is 3.47 (2)°. The N—N bond lengths indicate the presence of single- and double-bond characters and hence the –N=N—NH– moiety. In the crystal, inversion dimers linked by pairs of N—H⋯Cl hydrogen bonds occur, and C—H⋯π and π–π stacking interactions are also observed

    Measuring Iran’s success in achieving Millennium Development Goal 4: a systematic analysis of under-5 mortality at national and subnational levels from 1990 to 2015

    Get PDF
    Background Child mortality as one of the key Millennium Development Goals (MDG 4—to reduce child mortality by two-thirds from 1990 to 2015), is included in the Sustainable Development Goals (SDG 3, target 2—to reduce child mortality to fewer than 25 deaths per 1000 livebirths for all countries by 2030), and is a key indicator of the health system in every country. In this study, we aimed to estimate the level and trend of child mortality from 1990 to 2015 in Iran, to assess the progress of the country and its provinces toward these goals. Methods We used three different data sources: three censuses, a Demographic and Health Survey (DHS), and 5-year data from the death registration system. We used the summary birth history data from four data sources (the three censuses and DHS) and used maternal age cohort and maternal age period methods to estimate the trends in child mortality rates, combining the estimates of these two indirect methods using Loess regression. We also used the complete birth history method to estimate child mortality rate directly from DHS data. Finally, to synthesise different trends into a single trend and calculate uncertainty intervals (UI), we used Gaussian process regression. Findings Under-5 mortality rates (deaths per 1000 livebirths) at the national level in Iran in 1990, 2000, 2010, and 2015 were 63·6 (95% UI 63·1–64·0), 38·8 (38·5–39·2), 24·9 (24·3–25·4), and 19·4 (18·6–20·2), respectively. Between 1990 and 2015, the median annual reduction and total overall reduction in these rates were 4·9% and 70%, respectively. At the provincial level, the difference between the highest and lowest child mortality rates in 1990, 2000, and 2015 were 65·6, 40·4, and 38·1 per 1000 livebirths, respectively. Based on the MDG 4 goal, five provinces had not decreased child mortality by two-thirds by 2015. Furthermore, six provinces had not reached SDG 3 (target 2). Interpretation Iran and most of its provinces achieved MDG 4 and SDG 3 (target 2) goals by 2015. However, at the subnational level in some provinces, there is substantial inequity. Local policy makers should use effective strategies to accelerate the reduction of child mortality for these provinces by 2030. Possible recommendations for such strategies include enhancing the level of education and health literacy among women, tackling sex discrimination, and improving incomes for families

    Catalase-gold nanoaggregates manipulate the tumor microenvironment and enhance the effect of low-dose radiation therapy by reducing hypoxia

    No full text
    Radiotherapy as a standard method for cancer treatment faces tumor recurrence and antitumoral unresponsiveness. Suppressive tumor microenvironment (TME) and hypoxia are significant challenges affecting efficacy of radiotherapy. Herein, a versatile method is introduced for the preparation of pH-sensitive catalase-gold cross-linked nanoaggregate (Au@CAT) having acceptable stability and selective activity in tumor microenvironment. Combining Au@CAT with low-dose radiotherapy enhanced radiotherapy effects via polarizing protumoral immune cells to the antitumoral landscape. This therapeutic approach also attenuated hypoxia, confirmed by downregulating hypoxia hallmarks, such as hypoxia-inducible factor α-subunits (HIF-α), vascular endothelial growth factor (VEGF), and EGF. Catalase stability against protease digestion was improved significantly in Au@CAT compared to the free catalase. Moreover, minimal toxicity of Au@CAT on normal cells and increased reactive oxygen species (ROS) were confirmed in vitro compared with radiotherapy. Using the nanoaggregates combined with radiotherapy led to a significant reduction of immunosuppressive infiltrating cells such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (T-regs) compared to the other groups. While, this combined therapy could significantly increase the frequency of CD8+ cells as well as M1 to M2 macrophages (MQs) ratio. The combination therapy also reduced the tumor size and increased survival rate in mice models of colorectal cancer (CRC). Our results indicate that this innovative nanocomposite could be an excellent system for catalase delivery, manipulating the TME and providing a potential therapeutic strategy for treating CRC

    Measuring Iran's success in achieving Millennium Development Goal 4: a systematic analysis of under-5 mortality at national and subnational levels from 1990 to 2015

    No full text
    Summary: Background: Child mortality as one of the key Millennium Development Goals (MDG 4—to reduce child mortality by two-thirds from 1990 to 2015), is included in the Sustainable Development Goals (SDG 3, target 2—to reduce child mortality to fewer than 25 deaths per 1000 livebirths for all countries by 2030), and is a key indicator of the health system in every country. In this study, we aimed to estimate the level and trend of child mortality from 1990 to 2015 in Iran, to assess the progress of the country and its provinces toward these goals. Methods: We used three different data sources: three censuses, a Demographic and Health Survey (DHS), and 5-year data from the death registration system. We used the summary birth history data from four data sources (the three censuses and DHS) and used maternal age cohort and maternal age period methods to estimate the trends in child mortality rates, combining the estimates of these two indirect methods using Loess regression. We also used the complete birth history method to estimate child mortality rate directly from DHS data. Finally, to synthesise different trends into a single trend and calculate uncertainty intervals (UI), we used Gaussian process regression. Findings: Under-5 mortality rates (deaths per 1000 livebirths) at the national level in Iran in 1990, 2000, 2010, and 2015 were 63·6 (95% UI 63·1–64·0), 38·8 (38·5–39·2), 24·9 (24·3–25·4), and 19·4 (18·6–20·2), respectively. Between 1990 and 2015, the median annual reduction and total overall reduction in these rates were 4·9% and 70%, respectively. At the provincial level, the difference between the highest and lowest child mortality rates in 1990, 2000, and 2015 were 65·6, 40·4, and 38·1 per 1000 livebirths, respectively. Based on the MDG 4 goal, five provinces had not decreased child mortality by two-thirds by 2015. Furthermore, six provinces had not reached SDG 3 (target 2). Interpretation: Iran and most of its provinces achieved MDG 4 and SDG 3 (target 2) goals by 2015. However, at the subnational level in some provinces, there is substantial inequity. Local policy makers should use effective strategies to accelerate the reduction of child mortality for these provinces by 2030. Possible recommendations for such strategies include enhancing the level of education and health literacy among women, tackling sex discrimination, and improving incomes for families. Funding: Iran Ministry of Health and Education
    corecore