15,214 research outputs found

    Photon Multiplicity Measurements : From SPS to RHIC and LHC

    Full text link
    Results from the photon multiplicity measurements using a fine granularity preshower photon multiplicity detector (PMD) at CERN SPS are discussed. These include study of pseudo-rapidity distributions of photons, scaling of photon multiplicity with number of participating nucleons, centrality dependence of mean transverse momentum of photons, event-by-event fluctuations in photon multiplicity and localised charged-neutral fluctuations. Basic features of the PMD to be used in STAR experiment at RHIC and in ALICE experiment at LHC are also discussed.Comment: 12 pages, Invited talk at the 4th International Conference on the Physcis and Astrophysics of the Quark-Gluon-Plasma, November 2001, Jaipur, India, to appear in Praman

    Event-by-Event Search for Charged Neutral Fluctuations in Pb - Pb Collisions at 158-A-GeV

    Full text link
    Results from the analysis of data obtained from the WA98 experiment at the CERN SPS have been presented. Some events have been filtered which show photon excess in limited η−ϕ\eta-\phi zones within the overlap region of the charged particle and photon multiplicity detectors.Comment: 6 pages, 4 figure

    Radiative rates and electron impact excitation rates for transitions in He II

    Get PDF
    We report calculations of energy levels, radiative rates, collision strengths, and effective collision strengths for transitions among the lowest 25 levels of the n <= 5 configurations of He~II. The general-purpose relativistic atomic structure package (GRASP) and Dirac atomic R-matrix code (DARC) are adopted for the calculations. Radiative rates, oscillator strengths, and line strengths are reported for all electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), and magnetic quadrupole (M2) transitions among the 25 levels. Furthermore, collision strengths and effective collision strengths are listed for all 300 transitions among the above 25 levels over a wide energy (temperature) range up to 9 Ryd (10**5.4 K). Comparisons are made with earlier available results and the accuracy of the data is assessed.Comment: 30 pages of text including 12 figures and 5 Tables will appear in ATOMS 5 (2017

    Structure of confined laminar spray diffusion flames: Numerical investigation

    Get PDF
    The structure of confined laminar spray diffusion flames is investigated numerically by solving the gas-phase conservation equations for mass species, continuity, momentum, and energy and the liquid-phase equations for droplet position, velocity, size, and temperature. A one-step global reaction scheme along with six equilibrium reactions are employed to model the flame chemistry. Monodisperse as well as polydisperse sprays are considered. The numerical results demonstrate that liquid spray flames substantially differ from gaseous flames in their structure, i.e., temperature, concentration, and velocity fields, shape, and dimensions under the same conditions. Spray flames are predicted to be taller and narrower than their counterpart gaseous ones and their shapes are almost cylindrical. This is in agreement with experimental observations. The numerical computations also show that the use of the equilibrium reactions with the one-step reaction scheme decreases the flame temperature compared to the one-step reaction scheme without the equilibrium reactions and more importantly increases the surface area of the flame zone due to a phenomenon termed 'equilibrium broadening.' The spray flames also possess a finite thickness with minimal overlap of the fuel and oxygen species. A case for which a fuel-mixture consisting of 20 to 80 percent gas-liquid by mass is introduced into the combustor is also investigated and compared with predictions using only gaseous or liquid fuel

    Two-Proton Radioactivity with 2p halo in light mass nuclei A==18−-34

    Full text link
    Two-proton radioactivity with 2p halo is reported theoretically in light mass nuclei A == 18-34. We predict 19^{19}Mg, 22^{22}Si, 26^{26}S, 30^{30}Ar and 34^{34}Ca as promising candidates of ground state 2p-radioactivity with S2p_{2p} 0. Observation of extended tail of spatial charge density distribution, larger charge radius and study of proton single particle states, Fermi energy and the wave functions indicate 2p halo like structure which supports direct 2p emission. The Coulomb and centrifugal barriers in experimentally identified 2p unbound 22^{22}Si show a quasi-bound state that ensures enough life time for such experimental probes. Our predictions are in good accord with experimental and other theoretical data available so far.Comment: 5 Pages, 5 figure

    Empirical Evaluation of the Parallel Distribution Sweeping Framework on Multicore Architectures

    Full text link
    In this paper, we perform an empirical evaluation of the Parallel External Memory (PEM) model in the context of geometric problems. In particular, we implement the parallel distribution sweeping framework of Ajwani, Sitchinava and Zeh to solve batched 1-dimensional stabbing max problem. While modern processors consist of sophisticated memory systems (multiple levels of caches, set associativity, TLB, prefetching), we empirically show that algorithms designed in simple models, that focus on minimizing the I/O transfers between shared memory and single level cache, can lead to efficient software on current multicore architectures. Our implementation exhibits significantly fewer accesses to slow DRAM and, therefore, outperforms traditional approaches based on plane sweep and two-way divide and conquer.Comment: Longer version of ESA'13 pape

    An investigation of Fe XV emission lines in solar flare spectra

    Full text link
    Previously, large discrepancies have been found between theory and observation for Fe XV emission line ratios in solar flare spectra covering the 224-327 A wavelength range, obtained by the Naval Research Laboratory's S082A instrument on board Skylab. These discrepancies have been attributed to either errors in the adopted atomic data or the presence of additional atomic processes not included in the modelling, such as fluorescence. However our analysis of these plus other S082A flare observations (the latter containing Fe XV transitions between 321-482 A), performed using the most recent Fe XV atomic physics calculations in conjunction with a CHIANTI synthetic flare spectrum, indicate that blending of the lines is primarily responsible for the discrepancies. As a result, most Fe XV lines cannot be employed as electron density diagnostics for solar flares, at least at the spectral resolution of S082A and similar instruments (i.e. ~ 0.1 A). An exception is the intensity ratio I(321.8 A)/I(327.0 A), which appears to provide good estimates of the electron density at this spectral resolution.Comment: 6 pages, 3 figures, Astronomy & Astrophysics, in pres

    Electron Impact Excitation Cross Sections for Hydrogen-Like Ions

    Full text link
    We present cross sections for electron-impact-induced transitions n --> n' in hydrogen-like ions C 5+, Ne 9+, Al 12+, and Ar 17+. The cross sections are computed by Coulomb-Born with exchange and normalization (CBE) method for all transitions with n < n' < 7 and by convergent close-coupling (CCC) method for transitions with n 2s and 1s --> 2p are presented as well. The CCC and CBE cross sections agree to better than 10% with each other and with earlier close-coupling results (available for transition 1 --> 2 only). Analytical expression for n --> n' cross sections and semiempirical formulae are discussed.Comment: RevTeX, 5 pages, 13 PostScript figures, submitted to Phys. Rev.
    • 

    corecore