119 research outputs found

    Congenital infiltrative lipomas and retroperitoneal perirenal lipomas in a calf

    Get PDF
    BACKGROUND: Congenital lipocytic tumours have rarely been reported in cattle. Lipomas are benign tumours, but infiltrative lipomas have significant health implications due to their aggressive infiltrative growth pattern. CASE PRESENTATION: A calf was born with skeletal malformations and soft tissue proliferations, primarily on the external thoracic wall. The calf was euthanized for welfare reasons and submitted for post mortem examination. Necropsy, histopathology and post mortem computed tomography scanning revealed two types of lipocytic tumours. Widespread infiltrative lipomas were present in the muscles and connective tissues along the vertebral column and diffusely invaded the external soft tissues of the right thoracic wall. The neoplastic lipocytes had invaded intervertebral spaces thus causing congenital vertebral malformations, and further invaded the vertebral canal and the bone marrow of coccygeal vertebrae. Periosteal localization of the tumour was associated with costal hyperostosis. Two large retroperitoneal lipomas enclosed the kidneys and occupied much of the abdominal space. CONCLUSION: The development of congenital bone malformation in this calf illustrates the severe consequences of the infiltrative and aggressive growth of infiltrative lipomas during foetal development. The congenital retroperitoneal lipomas occupied a large part of abdominal cavity, but did not invade the adjacent tissues. Due to their large size, perirenal lipomas should be considered in calves with distended abdomen, even in cases without other signs of tumours

    Bovine renal lipofuscinosis:prevalence, genetics and impact on milk production and weight at slaughter in Danish cattle

    Get PDF
    BACKGROUND: Bovine renal lipofuscinosis (BRL) is an incidental finding in cattle at slaughter. Condemnation of the kidneys as unfit for human consumption was until recently considered the only implication of BRL. Recent studies have indicated a negative influence on the health of affected animals. The present study investigated the prevalence, genetics and effect of BRL on milk yield and weight at slaughter. METHODS: BRL status of slaughter cattle was recorded at four abattoirs during a 2-year-period. Data regarding breed, age, genetic descent, milk yield and weight at slaughter were extracted from the Danish Cattle Database. The prevalence of BRL was estimated stratified by breed and age-group. Furthermore, total milk yield, milk yield in last full lactation and weight at slaughter were compared for BRL-affected and non-affected Danish Holsteins and Danish Red cattle. RESULTS: 433,759 bovines were slaughtered and 787 of these had BRL. BRL was mainly diagnosed in Danish Red, Danish Holstein and crossbreds. The age of BRL affected animals varied from 11 months to 13 years, but BRL was rarely diagnosed in cattle less than 2 years of age. The total lifelong energy corrected milk (ECM) yields were 3,136 and 4,083 kg higher for BRL affected Danish Red and Danish Holsteins, respectively. However, the median life span of affected animals was 4.9 months longer, and age-corrected total milk yield was 1,284 kg lower for BRL affected Danish Red cows. These cows produced 318 kg ECM less in their last full lactation. Weight at slaughter was not affected by BRL status. The cases occurred in patterns consistent with autosomal recessive inheritance and several family clusters of BRL were found. Analysis of segregation ratios demonstrated the expected ratio for Danish Red cattle, but not for Danish Holsteins. CONCLUSION: The study confirmed that BRL is a common finding in Danish Holsteins and Danish Red cattle at slaughter. The disorder is associated with increased total milk yield due to a longer production life. However, a reduced milk yield was detected in the end of the production life in Danish Red. The study supports that BRL is inherited autosomal recessively in the Danish Red breed and Danish Holsteins, but with incomplete penetrance of the genotype in Danish Holsteins

    Slaughter of pregnant cattle in Denmark:Prevalence, gestational age, and reasons

    Get PDF
    The slaughter of pregnant cattle gives rise to ethical controversy. We estimated the prevalence of pregnant cattle, elucidated the reasons for their slaughter, and in light of our findings, discussed the ethics of sending pregnant cattle for slaughter. Among 825 female cattle >353 days of age admitted to a Danish abattoir, 187 (23%) were found to be pregnant. There was no apparent difference in the proportion of pregnant animals between dairy and non-dairy cattle. “Health”-related slaughter was most frequent in dairy herds (70%), whereas “production”-related slaughter was most frequent in non-dairy herds (63%). While many farmers considered it unethical to slaughter pregnant cows without a good reason for doing so, many dairy farmers identified animal welfare as an important parameter in the decision, which was typically when the general condition of the cow or heifer would make it difficult for her to pass through calving and subsequent lactation. The many pregnant animals sent for slaughter were often the result of deliberate choices. Non-dairy farmers often kept a bull with their female cattle, and in many instances, this resulted in the mating of cattle intended for slaughter. Although considered ethically problematic by many dairy farmers, the slaughter of pregnant dairy cattle was often considered better for the cow compared to a stressful lactation period

    Prevalence of canid herpesvirus-1 infection in stillborn and dead neonatal puppies in Denmark

    Get PDF
    BACKGROUND: Canid herpesvirus-1 (CaHV-1) infection in puppies less than three weeks of age is often reported to be associated with a lethal generalized necrotizing inflammation and since the discovery of the virus in 1965 several reports of neonatal infections have been published. However, the significance of CaHV-1 for peri- and neonatal mortality in puppies remains unclear. Therefore, we examined stillborn and dead neonatal puppies in Denmark to determine the prevalence of infection and further to correlate infection levels with necropsy findings to assess the possible significance of the infection. RESULTS: From a cross-sectional study of 57 dead puppies, 22.8% (n = 13) were confirmed positive for CaHV-1 by real-time polymerase chain reaction (PCR) of tissue pools of lung/liver and/or spleen/kidney. Specimens from PCR positive cases were further investigated by histology and in situ hybridization (ISH). High levels of CaHV-1 DNA were present in only one case in which lesions and ISH staining consistent with CaHV-1 infection were found as well. CaHV-1 concentrations in the other cases were low and a range of lesions not consistent with CaHV-1 were found. Similar, ISH staining was mostly negative in these except for one case with a few positive cells. CONCLUSION: CaHV-1 infection in stillborn and dead neonatal puppies in Denmark seems to be common, but the direct significance for puppy mortality remains unclear as only one of 13 PCR positive puppies (7.7%) had pathognomonic lesions. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13028-014-0092-9) contains supplementary material, which is available to authorized users

    Virus-induced congenital malformations in cattle

    Get PDF
    Diagnosing the cause of bovine congenital malformations (BCMs) is challenging for bovine veterinary practitioners and laboratory diagnosticians as many known as well as a large number of not-yet reported syndromes exist. Foetal infection with certain viruses, including bovine virus diarrhea virus (BVDV), Schmallenberg virus (SBV), blue tongue virus (BTV), Akabane virus (AKAV), or Aino virus (AV), is associated with a range of congenital malformations. It is tempting for veterinary practitioners to diagnose such infections based only on the morphology of the defective offspring. However, diagnosing a virus as a cause of BCMs usually requires laboratory examination and even in such cases, interpretation of findings may be challenging due to lack of experience regarding genetic defects causing similar lesions, even in cases where virus or congenital antibodies are present. Intrauterine infection of the foetus during the susceptible periods of development, i.e. around gestation days 60–180, by BVDV, SBV, BTV, AKAV and AV may cause malformations in the central nervous system, especially in the brain. Brain lesions typically consist of hydranencephaly, porencephaly, hydrocephalus and cerebellar hypoplasia, which in case of SBV, AKAV and AV infections may be associated by malformation of the axial and appendicular skeleton, e.g. arthrogryposis multiplex congenita. Doming of the calvarium is present in some, but not all, cases. None of these lesions are pathognomonic so diagnosing a viral cause based on gross lesions is uncertain. Several genetic defects share morphology with virus induced congenital malformations, so expert advice should be sought when BCMs are encountered. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13028-015-0145-8) contains supplementary material, which is available to authorized users

    A large deletion in the COL2A1 gene expands the spectrum of pathogenic variants causing bulldog calf syndrome in cattle.

    Get PDF
    BACKGROUND Congenital bovine chondrodysplasia, also known as bulldog calf syndrome, is characterized by disproportionate growth of bones resulting in a shortened and compressed body, mainly due to reduced length of the spine and the long bones of the limbs. In addition, severe facial dysmorphisms including palatoschisis and shortening of the viscerocranium are present. Abnormalities in the gene collagen type II alpha 1 chain (COL2A1) have been associated with some cases of the bulldog calf syndrome. Until now, six pathogenic single-nucleotide variants have been found in COL2A1. Here we present a novel variant in COL2A1 of a Holstein calf and provide an overview of the phenotypic and allelic heterogeneity of the COL2A1-related bulldog calf syndrome in cattle. CASE PRESENTATION The calf was aborted at gestation day 264 and showed generalized disproportionate dwarfism, with a shortened compressed body and limbs, and dysplasia of the viscerocranium; a phenotype resembling bulldog calf syndrome due to an abnormality in COL2A1. Whole-genome sequence (WGS) data was obtained and revealed a heterozygous 3513 base pair deletion encompassing 10 of the 54 coding exons of COL2A1. Polymerase chain reaction analysis and Sanger sequencing confirmed the breakpoints of the deletion and its absence in the genomes of both parents. CONCLUSIONS The pathological and genetic findings were consistent with a case of "bulldog calf syndrome". The identified variant causing the syndrome was the result of a de novo mutation event that either occurred post-zygotically in the developing embryo or was inherited because of low-level mosaicism in one of the parents. The identified loss-of-function variant is pathogenic due to COL2A1 haploinsufficiency and represents the first structural variant causing bulldog calf syndrome in cattle. Furthermore, this case report highlights the utility of WGS-based precise diagnostics for understanding congenital disorders in cattle and the need for continued surveillance for genetic disorders in cattle
    corecore