21 research outputs found

    Performance evaluation of the Schistoscope 5.0 for (semi-)automated digital detection and quantification of schistosoma haematobium eggs in Urine: A field-based study in Nigeria

    Get PDF
    Conventional microscopy is the standard procedure for the diagnosis of schistosomiasis, despite its limited sensitivity, reliance on skilled personnel, and the fact that it is error prone. Here, we report the performance of the innovative (semi-)automated Schistoscope 5.0 for optical digital detection and quantification of Schistosoma haematobium eggs in urine, using conventional microscopy as the reference standard. At baseline, 487 participants in a rural setting in Nigeria were assessed, of which 166 (34.1%) tested S. haematobium positive by conventional microscopy. Captured images from the Schistoscope 5.0 were analyzed manually (semiautomation) and by an artificial intelligence (AI) algorithm (full automation). Semi- and fully automated digital microscopy showed comparable sensitivities of 80.1% (95% confidence interval [CI]: 73.2–86.0) and 87.3% (95% CI: 81.3–92.0), but a significant difference in specificity of 95.3% (95% CI: 92.4–97.4) and 48.9% (95% CI: 43.3–55.0), respectively. Overall, estimated egg counts of semi- and fully automated digital microscopy correlated significantly with the egg counts of conventional microscopy (r = 0.90 and r = 0.80, respectively, P < 0.001), although the fully automated procedure generally underestimated the higher egg counts. In 38 egg positive cases, an additional urine sample was examined 10 days after praziquantel treatment, showing a similar cure rate and egg reduction rate when comparing conventional microscopy with semiautomated digital microscopy. In this first extensive field evaluation, we found the semiautomated Schistoscope 5.0 to be a promising tool for the detection and monitoring of S. haematobium infection, although further improvement of the AI algorithm for full automation is required

    Validation of artificial intelligence-based digital microscopy for automated detection of Schistosoma haematobium eggs in urine in Gabon

    Get PDF
    Introduction Schistosomiasis is a significant public health concern, especially in Sub-Saharan Africa. Conventional microscopy is the standard diagnostic method in resource-limited settings, but with limitations, such as the need for expert microscopists. An automated digital microscope with artificial intelligence (Schistoscope), offers a potential solution. This field study aimed to validate the diagnostic performance of the Schistoscope for detecting and quantifying Schistosoma haematobium eggs in urine compared to conventional microscopy and to a composite reference standard (CRS) consisting of real-time PCR and the up-converting particle (UCP) lateral flow (LF) test for the detection of schistosome circulating anodic antigen (CAA). Methods Based on a non-inferiority concept, the Schistoscope was evaluated in two parts: study A, consisting of 339 freshly collected urine samples and study B, consisting of 798 fresh urine samples that were also banked as slides for analysis with the Schistoscope. In both studies, the Schistoscope, conventional microscopy, real-time PCR and UCP-LF CAA were performed and samples with all the diagnostic test results were included in the analysis. All diagnostic procedures were performed in a laboratory located in a rural area of Gabon, endemic for S. haematobium. Results In study A and B, the Schistoscope demonstrated a sensitivity of 83.1% and 96.3% compared to conventional microscopy, and 62.9% and 78.0% compared to the CRS. The sensitivity of conventional microscopy in study A and B compared to the CRS was 61.9% and 75.2%, respectively, comparable to the Schistoscope. The specificity of the Schistoscope in study A (78.8%) was significantly lower than that of conventional microscopy (96.4%) based on the CRS but comparable in study B (90.9% and 98.0%, respectively). Conclusion Overall, the performance of the Schistoscope was non-inferior to conventional microscopy with a comparable sensitivity, although the specificity varied. The Schistoscope shows promising diagnostic accuracy, particularly for samples with moderate to higher infection intensities as well as for banked sample slides, highlighting the potential for retrospective analysis in resource-limited settings

    Schistoscope: smartphone versus Raspberry Pi based low-cost diagnostic device for urinary Schistosomiasis

    No full text
    Schistosomiasis is a neglected tropical disease of Public Health importance affecting over 252 million people worldwide with Nigeria having a very high number of cases. It is caused by blood flukes of the genus Schistosoma and transmitted by freshwater snails. To achieve the current global elimination objectives, low-cost and easy-to-use diagnostic tools are critically needed. Recent innovations in optical and computer technologies have made handheld digital and smartphone-based microscopes a viable diagnostic approach. Development, validation and deployment of these diagnostic devices for field use, however, require the optimisation of its optical train for the registration of high-resolution images and the realisation of a robust system design that can be locally produced in low-income countries. Field research conducted in Nigeria with active involvement of key stakeholders in research and development (R&D) led to the design of an initial prototype device for the diagnosis of urinary schistosomiasis, called Schistoscope 1.0. In this paper, we present further development of the Schistoscope 1.0 along two parallel design trajectories: a Raspberry Pi and a Smartphone-based Schistoscope. Specifically, we focused on the optimization of the optics, embodiment design and the electronics systems of the devices so as to produce a robust design with potential for local production

    Image-Based Awareness Campaign and Community Mobilization in the Control of Schistosomiasis

    No full text
    Community awareness and participation in mass screening is critical for schistosomiasis control. This study assessed the impact of sharing anonymized image-based positive test results on the uptake of screening during community mobilization outreach. We conducted an observational study to compare the population response to standard and image-based strategies in 14 communities in Abuja, Nigeria. Six hundred and ninety-one (341 females, 350 males) individuals participated in this study. We analyzed the response ratio, relative increase, and sample collection time. The potential treatment uptake and change in social behavior were determined based on a semi-structured questionnaire. The mean response ratio of the image-based strategy was 89.7% representing a significantly higher ratio than the 27.8%, which was observed under the standard mobilization approach (p ≤ 0.001). The image-based method was associated with 100% of the participants agreeing to provide urine samples, 94% willing to be treated, 89% claiming to have been invited to participate in the study by a friend, and 91% desiring to change a predisposing behavioral habit. These findings indicate that image-based community awareness campaigns may increase the population’s perception about schistosomiasis transmission and treatment. This raises new possibilities for local resource mobilization to expand services in reaching the last mile in schistosomiasis control

    Temperature-drift-immune wavelength meter based on an integrated micro-ring resonator

    No full text
    We present an integrated optical wavelength meter based on a Si3N4/SiO2 micro ring resonator (operating over a free spectral range of ≈ 2.6 nm) whose output response is immune to temperature changes. The wavelength meter readout is performed by a neural network and a non-linear optimization algorithm. This novel approach insures a high wavelength estimation precision (≈ 50 pm). We observe a long-term reproducibility of the wavelength meter response over a time interval of one week. We investigate the influence of the ambient temperature on the estimated wavelength. We observe an immunity of the displayed output wavelength to temperature changes of up to several degrees. The temperature-drift immunity appears to be caused by deviations from the theoretically expected (perfect) transmission function of a ring resonator, i.e., caused by deviations that are usually undesired in spectroscopic devices

    Performance evaluation of the AiDx multi-diagnostic automated microscope for the detection of schistosomiasis in Abuja, Nigeria

    No full text
    Abstract In this research, we report on the performance of automated optical digital detection and quantification of Schistosoma haematobium provided by AiDx NTDx multi-diagnostic Assist microscope. Our study was community-based, and a convenient sampling method was used in 17 communities in Abuja Nigeria, based on the disease prevalence information extracted from the baseline database on schistosomiasis, NTD Division, of the Federal Ministry of Health. At baseline, samples from 869 participants were evaluated of which 358 (34.1%) tested S. haematobium positive by the reference diagnostic standard. Registered images from the fully automated (autofocusing, scanning, image registration and processing, AI image analysis and automatic parasite count) AiDx assist microscope were analyzed. The Semi automated (autofocusing, scanning, image registration & processing and manual parasite count) and the fully automated AiDx Assist showed comparable sensitivities and specificities of [90.3%, 98%] and [89%, 99%] respectively. Overall, estimated egg counts of the semi-automated & fully automated AiDx Assist correlated significantly with the egg counts of conventional microscopy (r = 0.93, p ≤ 0.001 and r = 0.89, p ≤ 0.001 respectively). The AiDx Assist device performance is consistent with requirement of the World Health Organization diagnostic target product profile for monitoring, evaluation, and surveillance of Schistosomiasis elimination Programs

    Fig 3 -

    No full text
    Correlation between S. haematobium egg counts measured by the Schistoscope and S. haematobium egg counts measured by conventional microscopy (a, d, e), Ct-values determined by real-time PCR (b, f) and urine CAA concentration measured by UCP-LF CAA (c, g) in study A and B.</p
    corecore