28 research outputs found

    Optimisation for dynamic ride-sharing

    Get PDF
    For decades, people have looked for ways to maximise personal transportation efficiency, especially for the regular commute between home and work. Particularly in times of economic difficulties, the primary aim is generally to reduce costs by sharing them. However, an important priority for travellers by car is also to find a substitute for inadequate public transport

    Demand Management in E-Fulfillment

    Get PDF
    Internet retailers are in a unique position to adjust, in real-time, the product and service offering to the customer and to change the corresponding prices. Although this flexibility provides a vast potential for demand management to enhance profitability, standard practices and models to support the decision makers are lacking as of to date. This thesis aims to contribute to closing this gap by systematically investigating demand management approaches in e-fulfillment. We identify relevant novel planning issues through an in-depth case study at a Dutch e-grocer. We focus particularly on attended home delivery, where the Internet retailer applies delivery time slots to coordinate the reception of the purchased goods with the customer. The main levers to manage customer demand in such an environment are the offered time slots and the corresponding delivery fees. The Internet retailer may apply both of these options, slotting and pricing, at different moments in the sales process, either off-line prior to the actual order in-take or real-time as demand unfolds. The thesis presents several decision-support models for time slot management, both forecast-based and in real-time. The computational studies on real-life data demonstrate the viability and the merits of these methods. The results show that a more dynamic and differentiated demand management approach can lead to considerable cost savings and revenue gains

    Strategies for Handling Temporal Uncertainty in Pickup and Delivery Problems with Time Windows

    Get PDF
    In many real-life routing problems there is more uncertainty with respect to the required timing of the service than with respect to the service locations. We focus on a pickup and delivery problem with time windows in which the pickup and drop-off locations of the service requests are fully known in advance, but the time at which these jobs will require service is only fully revealed during operations. We develop a sample-scenario routing strategy to accommodate a variety of potential time real- izations while designing and updating the routes. Our experiments on a breadth of instances show that advance time related information, if used intelligently, can yield benefits. Furthermore, we show that it is beneficial to tailor the consensus function that is used in the sample-scenario approach to the specifics of the problem setting. By doing so, our strategy performs well on instances with both short time windows and limited advance confirmation

    The Value of Inaccurate Advance Time Window Information in a Pick-up and Delivery Problem

    Get PDF
    We examine different routing strategies to cope with inaccurate time window in- formation in the context of a dynamic pick-up and delivery problem with time windows. Our experiments show that advance information, even if inaccurate, can provide benefits from a planning perspective. We propose a novel stochastic strategy that consistently performs well compared to several benchmark strategies

    Stable Matching for Dynamic Ride-sharing Systems

    Get PDF
    Dynamic ride-sharing systems enable people to share rides and increase the efficiency of urban transportation by connecting riders and drivers on short notice. Automated systems that establish ride-share matches with minimal input from participants provide the most convenience and the most potential for system-wide performance improvement, such as reduction in total vehicle-miles traveled. Indeed, such systems may be designed to match riders and drivers to maximize system performance improvement. However, system-optimal matches may not provide the maximum benefit to each individual participant. In this paper we consider a notion of stability for ride-share matches and present several mathematical programming methods to establish stable or nearly-stable matches, where we note that ride-share matching optimization is performed over time with incomplete information. Our numerical experiments using travel demand data for the metropolitan Atlanta region show that we can significantly increase the stability of ride-share matching solutions at the cost of only a small degradation in system-wide performance

    Optimization Approaches for the Traveling Salesman Problem with Drone

    Get PDF
    The fast and cost-efficient home delivery of goods ordered online is logistically challenging. Many companies are looking for new ways to cross the last-mile to their customers. One technology-enabled opportunity that recently has rec

    Planning of Truck Platoons: a Literature Review and Directions for Future Research

    Get PDF
    A truck platoon is a set of virtually linked trucks that drive closely behind one another using automated driving technology. Benefits of truck platooning include cost savings, reduced emissions, and more efficient utilization of road capacity. To fully reap these benefits in the initial phases requires careful planning of platoons based on trucks’ itineraries and time schedules. This paper provides a framework to classify various new transportation planning problems that arise in truck platooning, surveys relevant operations research models for these problems in the literature and identifies directions for future research

    “Make no little plans”: Impactful research to solve the next generation of transportation problems

    Get PDF
    The transportation science research community has contributed to numerous practical and intellectual innovations and improvements over the last decades. Technological advancements have broadened and amplified the potential impacts of our field. At the same time, the world and its communities are facing greater and more serious challenges than ever before. In this paper, we call upon the transportation science research community to work on a research agenda that addresses some of the most important of these challenges. This agenda is guided by the sustainable development goals outlined by the United Nations and organized into three areas: (1) well-being, (2) infrastructure, and, (3) natural environment. For each area, we identify current and future challenges as well as research directions to address those challenges

    E-Fulfillment and Multi-Channel Distribution – A Review

    Get PDF
    This review addresses the specific supply chain management issues of Internet fulfillment in a multi-channel environment. It provides a systematic overview of managerial planning tasks and reviews corresponding quantitative models. In this way, we aim to enhance the understanding of multi-channel e-fulfillment and to identify gaps between relevant managerial issues and academic literature, thereby indicating directions for future research. One of the recurrent patterns in today’s e-commerce operations is the combination of ‘bricks-and-clicks’, the integration of e-fulfillment into a portfolio of multiple alternative distribution channels. From a supply chain management perspective, multi-channel distribution provides opportunities for serving different customer segments, creating synergies, and exploiting economies of scale. However, in order to successfully exploit these opportunities companies need to master novel challenges. In particular, the design of a multi-channel distribution system requires a constant trade-off between process integration and separation across multiple channels. In addition, sales and operations decisions are ever more tightly intertwined as delivery and after-sales services are becoming key components of the product offering
    corecore