22 research outputs found

    Vaccines targeting the neovasculature of tumors

    Get PDF
    Angiogenesis has a critical role in physiologic and disease processes. For the growth of tumors, angiogenesis must occur to carry sufficient nutrients to the tumor. In addition to growth, development of new blood vessels is necessary for invasion and metastases of the tumor. A number of strategies have been developed to inhibit tumor angiogenesis and further understanding of the interplay between tumors and angiogenesis should allow new approaches and advances in angiogenic therapy. One such promising angiogenic approach is to target and inhibit angiogenesis with vaccines. This review will discuss recent advances and future prospects in vaccines targeting aberrant angiogenesis of tumors. The strategies utilized by investigators have included whole endothelial cell vaccines as well as vaccines with defined targets on endothelial cells and pericytes of the developing tumor endothelium. To date, several promising anti-angiogenic vaccine strategies have demonstrated marked inhibition of tumor growth in pre-clinical trials with some showing no observed interference with physiologic angiogenic processes such as wound healing and fertility

    News on microenvironmental physioxia to revisit skin cells targeting approaches.

    No full text
    International audienceThe skin is a multifunctional organ and a first line of defense actively protecting from environmental stress caused by injury, microbial treat, UV irradiation and environmental toxins. Diverse cutaneous cell types together with extracellular matrix elements and factors create a dynamic scene for cellular communication crucial in vital processes such as wound healing, inflammation, angiogenesis, immune response. Direct functional success of skin equilibrium depends on its microenvironment settings and particularly the local oxygen tension. Indeed, skin entire milieu is characterized by and highly dependent on its low oxygen tension called physioxia as emphasized in this review. In the context of skin physioxia, we review and propose here new approaches to minimize age-related changes in skin state and function. We particularly emphasize carbohydrate-mediated interactions and new 3D models of engineered skin substitutes. We highlight newly emerged tools and targets including stem cells, miRNAs, matrix metalloproteinases, mitochondria and natural antioxidants that are promising in prevention of skin ageing and disease restraint. In the era of advanced dermatology, new attempts are bringing us closer to 'well being' perception

    Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia

    No full text
    International audienceOxygen supply and diffusion into tissues are necessary for survival. The oxygen partial pressure (pO(2)), which is a key component of the physiological state of an organ, results from the balance between oxygen delivery and its consumption. In mammals, oxygen is transported by red blood cells circulating in a well-organized vasculature. Oxygen delivery is dependent on the metabolic requirements and functional status of each organ. Consequently, in a physiological condition, organ and tissue are characterized by their own unique 'tissue normoxia' or 'physioxia' status. Tissue oxygenation is severely disturbed during pathological conditions such as cancer, diabetes, coronary heart disease, stroke, etc., which are associated with decrease in pO(2), i.e. 'hypoxia'. In this review, we present an array of methods currently used for assessing tissue oxygenation. We show that hypoxia is marked during tumour development and has strong consequences for oxygenation and its influence upon chemotherapy efficiency. Then we compare this to physiological pO(2) values of human organs. Finally we evaluate consequences of physioxia on cell activity and its molecular modulations. More importantly we emphasize the discrepancy between in vivo and in vitro tissue and cells oxygen status which can have detrimental effects on experimental outcome. It appears that the values corresponding to the physioxia are ranging between 11% and 1% O-2 whereas current in vitro experimentations are usually performed in 19.95% O-2, an artificial context as far as oxygen balance is concerned. It is important to realize that most of the experiments performed in so-calle
    corecore