25 research outputs found

    Evaluation of the ability to metabolize 1,2-propanediol by heterofermentative bacteria of the genus Lactobacillus

    Get PDF
    Background: New directions of research on lactic acid bacteria include investigation of metabolic pathways for the synthesis and/or metabolism of 1,2-propanediol, commonly used in the food and chemical industry, medicine, pharmacy and cosmetology as well as agriculture. The objective of this study was to compare the capacity of strains representing three diverse heterofermentative species belonging to the genus Lactobacillus to synthesize and/or transform 1,2-PD as well as to suggest new directions of research aimed at commercial use of this metabolite. Results: The novel strain of Lactobacillus buchneri A KKP 2047p, characterized as exhibiting an unusual trait for that species in the form of capacity to metabolize 1,2-PD, grew poorly in a medium containing 1,2-PD as a sole carbon source. The supplementation with glucose facilitated rapid growth of bacteria and use of 1,2-PD for the synthesis of propionic acid. A similar observation was noted for Lactobacillus reuteri . On the other hand, Lactobacillus diolivorans effectively metabolized 1,2-PD which was the sole carbon source in the medium, and the addition of glucose inhibited the synthesis of propionic acid. The experiments also investigated the effect of cobalamin as a diol dehydratase coenzyme involved in the propionic acid synthesis from 1,2-PD whose addition promoted the yield of the reaction in the case of all tested strains. Conclusions: All tested isolates showed the ability to effectively metabolize 1,2-PD (in the presence of cobalamin) and its conversion to propionic acid, which reveals that investigated bacteria meet the essential requirements of microorganisms with a potential application

    Exploring the Impact of Lipid-Rich Food Industry Waste Carbon Sources on the Growth of Candida cylindracea DSM 2031

    No full text
    The aim of this study was to evaluate the possibility of using several lipid-rich food industry wastes in the culture medium on the growth of Candida cylindracea DSM 2031 yeast strain. Four lipid wastes from the food industry: waste fish oil, rancid ghee, waste pork lard, and waste duck processing oil were investigated. It has been shown in the laboratory scale that the above-mentioned wastes can be used to obtain biomass and produce lipolytic enzymes by the tested strain and the C. cylindracea extracellular lipase is not constitutive. High yields of biomass (12.84, 12.75, and 12.24 g/dm3) were obtained in media containing waste duck processing oil, olive oil, and waste pork lard, respectively. The highest lipolytic activity was obtained in the media containing waste fish oil and rancid ghee (0.050 and 0.047 U/cm3). During 192-h flask cultures the highest extracellular lipase activity and biomass yield were observed in the late logarithmic phase. The study showed that there is a potential for waste management to produce lipolytic enzymes or to produce yeast biomass. The use of waste substrates may contribute to lowering the costs of commercial production, and such a solution is part of the sustainable development strategy

    Investigating Culture Media for Obtaining Lipolytic Biocatalysts Based on Rhizopus oryzae Fungi

    No full text
    Rhizopus oryzae is widely distributed in nature and can be isolated from different substrates such as decomposing vegetables, fruits and various soils. It is generally classified as GRAS filamentous fungi and commonly used in the production of oriental traditional food such as tempeh or peka. This microorganism has great industrial potential due to the capability to synthesize enzymes (glucoamylases, cellulases and lipases) and organic acids (lactic acid, fumaric acid). The most studied enzymes of the fungi are lipases (ROL). Therefore, the aim of the study was the selection of growth medium content and initial pH rate, which would provide high lipase synthesis yield in 5 days shaken cultures. Two fractions of lipases were investigated in order to obtain lipase biocatalysts: extracellular enzymes present in supernatant and cell-bound lipases in biomass. The used nutrient-rich media were: YPG (10 g/L yeast extract, 20 g/L peptone, 20 g/L glucose), YPO (10 g/L yeast extract, 20 g/L peptone, 20 g/L olive oil), YMG (3 g/L yeast extract, 3 g/L malt extract, 5 g/L peptone, 20 g/L glucose), YMO (3 g/L yeast extract, 3 g/L malt extract, 5 g/L peptone, 20 g/L olive oil). The mineral media were: SMG (10 g/L peptone, 14 g/L KH2PO4, 2.4 g/L K2HPO4, 0.4 g/L MgSO4, 20 g/L glucose) and SMO (10 g/L peptone, 14 g/L KH2PO4, 2.4 g/L K2HPO4, 0.4 g/L MgSO4, 20 g/L olive oil). Fungi biomass and supernatant were separated and used to measure lipase activity by a spectrophotometric method based on the hydrolysis of p-nitrophenyl laurate. The results showed that the highest lipase activity after 5 days of cultivation was reached in YPO medium for biomass (from 7- to 60-fold higher results depending on the compared variant of culture media) and YMG for supernatant (from 3- to 6.5-fold higher results depending on the used variant of culture media). The addition of citric acid resulted in a two times increase of the activity of produced lipases after 5 days of cultivation

    Studies on the Catalytic Properties of Crude Freeze-Dried Preparations of Yarrowia lipolytica Extracellular Lipases for Geranyl Ester Derivative Synthesis

    No full text
    The study aimed to evaluate the impact of selected factors of the freeze-drying process on the hydrolytic and synthetic activity of the extracellular lipases of Y. lipolytica KKP 379 and to attempt the use of the crude enzyme preparation as a biocatalyst in the synthesis of geranyl 4-hydroxyphenylpropanoate. Antioxidant and antibacterial properties of the geranyl ester derivative were also investigated in order to evaluate their usefulness as a novel food additive. The studies confirmed that freeze-drying was an effective method of dehydrating yeast supernatant and allowed for obtaining lyophilizates with low water activity from 0.055 to 0.160. The type and concentration of the additive (2–6% whey protein hydrolyzate, 0.5% and 1% ammonium sulphate) had a significant effect on the hydrolytic activity of enzyme preparations, while the selected variants of drying temperature during the freeze-drying process were not significant (10 °C and 50 °C). Low yield of geranyl 4-hydroxyphenylopropionate was shown when the lyophilized supernatant was used (5.3%), but the yield of ester synthesis increased when the freeze-dried Y. lipolytica yeast biomass was applied (47.9%). The study confirmed the antioxidant properties of the synthesized ester by the DPPH• and CUPRAC methods, as well as higher antibacterial activity against tested bacteria than its precursor with 0.125 mM MIC (minimal inhibitory concentration) against L. monocytogenes

    Improved Gamma-Decalactone Synthesis by <i>Yarrowia lipolytica</i> Yeast Using Taguchi Robust Design Method

    No full text
    The production of gamma-decalactone (GDL) by Yarrowia lipolytica is mainly based on the biotransformation of ricinoleic acid, derived from castor oil triglycerides. The main difficulty in this process is the multitude of factors that determine the growth rate of microorganisms, and thus affect the efficiency of lactone synthesis. In order to improve the technological aspects of GDL biosynthesis in batch culture, the influence of three factors was determined: substrate concentration, medium mixing intensity, and its pH, using the Taguchi solid design method (based on orthogonal array design). On the basis of four bioreactor batch cultures, the most favorable culture conditions in terms of GDL synthesis were selected using the statistical Taguchi method. The statistical method of experimental planning has shown that the optimal parameters of lactone biosynthesis are a constant pH at the level of 7, a variable mixing speed in the range of 200–500 rpm, and a substrate concentration at the level of 75 g/L. Using these parameters, about 2.93 ± 0.33 g/L of aroma was obtained. The intensity of mixing turned out to be the most important factor influencing the increase in GDL concentration in the medium

    Aeration and Stirring in Yarrowia lipolytica Lipase Biosynthesis during Batch Cultures with Waste Fish Oil as a Carbon Source

    No full text
    Yarrowia lipolytica is one of the most studied non-conventional forms of yeast, exhibiting a high secretory capacity and producing many industrially important and valuable metabolites. The yeast conceals a great biotechnological potential to synthesize organic acids, sweeteners, microbial oil, or fragrances. The vast majority of bioprocesses are carried out in bioreactors, where suitable culture conditions are provided. In the current study, the effect of agitation speed (200–600 rpm) and air flow rate (0.0375–2.0 dm3/(dm3 × min)) on the biomass yield and lipase activity of Y. lipolytica KKP 379 is analyzed in a growth medium containing waste fish oil. The increase of aeration intensity limited the period of oxygen deficit in the medium. Simultaneously, an increase in lipolytic activity was observed from 2.09 U/cm3 to 14.21 U/cm3; however, an excessive agitation speed likely caused oxidative or shear stresses, and a reduction in lipolytic activity was observed. Moreover, it is confirmed that the synthesis of lipases is related to oxygen consumption, pH, and the yeast growth phase, and appropriate process selection may provide two advantages, namely, the maximum use of the waste carbon source and the production of lipolytic enzymes that are valuable in many industries

    Phosphorus and Nitrogen Limitation as a Part of the Strategy to Stimulate Microbial Lipid Biosynthesis

    No full text
    Microbial lipids called a sustainable alternative to traditional vegetable oils invariably capture the attention of researchers. In this study, the effect of limiting inorganic phosphorus (KH2PO4) and nitrogen ((NH4)2SO4) sources in lipid-rich culture medium on the efficiency of cellular lipid biosynthesis by Y. lipolytica yeast has been investigated. In batch cultures, the carbon source was rapeseed waste post-frying oil (50 g/dm3). A significant relationship between the concentration of KH2PO4 and the amount of lipids accumulated has been revealed. In the shake-flask cultures, storage lipid yield was correlated with lower doses of phosphorus source in the medium. In bioreactor culture in mineral medium with (g/dm3) 3.0 KH2PO4 and 3.0 (NH4)2SO4, the cellular lipid yield was 47.5% (w/w). Simultaneous limitation of both phosphorus and nitrogen sources promoted lipid accumulation in cells, but at the same time created unfavorable conditions for biomass growth (0.78 gd.m./dm3). Increased phosphorus availability with limited cellular access to nitrogen resulted in higher biomass yields (7.45 gd.m./dm3) than phosphorus limitation in a nitrogen-rich medium (4.56 gd.m./dm3), with comparable lipid yields (30% and 32%). Regardless of the medium composition, the yeast preferentially accumulated oleic and linoleic acids as well as linolenic acid up to 8.89%. Further, it is crucial to determine the correlation between N/P molar ratios, biomass growth and efficient lipid accumulation. In particular, considering the contribution of phosphorus as a component of coenzymes in many metabolic pathways, including lipid biosynthesis and respiration processes, its importance as a factor in the cultivation of the oleaginous microorganisms was highlighted

    Mini-Review on the Enzymatic Lipophilization of Phenolics Present in Plant Extracts with the Special Emphasis on Anthocyanins

    No full text
    Different plant extracts have the potential to be important sources of phenolic compounds. Their antibacterial, antifungal and antioxidant properties are of interest to researchers due to various possibilities for use in the pharmacy, cosmetic and food industries. Unfortunately, the direct application of phenolics in food is limited because of their hydrophilic nature and low solubility. The review is devoted to the recent advances in the methods of lipophilization of phenolic extracts along with the use of enzymes. The concept of extract modification instead of single compound modification is based on the expected synergistic effect of many phenolic compounds. The main focus is on the phenolic compounds found in fruits, flowers and leaves of different common and underutilized as well as medicinal, folk-medicinal or endemic plants. The compiled papers point to the great interest in the modification of anthocyanins, highly active but often unstable phenolics. Some examples of other flavonoids are also outlined. The possible applications of the lipophilized plant extracts are presented for improving the stability of edible oils, decreasing the content of acrylamide, exhibiting higher color stability in thermal processing and increasing the nutritional value

    Evaluation of the ability to metabolize 1,2-propanediol by heterofermentative bacteria of the genus Lactobacillus

    No full text
    Background: New directions of research on lactic acid bacteria include investigation of metabolic pathways for the synthesis and/or metabolism of 1,2-propanediol, commonly used in the food and chemical industry, medicine, pharmacy and cosmetology as well as agriculture. The objective of this study was to compare the capacity of strains representing three diverse heterofermentative species belonging to the genus Lactobacillus to synthesize and/or transform 1,2-PD as well as to suggest new directions of research aimed at commercial use of this metabolite. Results: The novel strain of Lactobacillus buchneri A KKP 2047p, characterized as exhibiting an unusual trait for that species in the form of capacity to metabolize 1,2-PD, grew poorly in a medium containing 1,2-PD as a sole carbon source. The supplementation with glucose facilitated rapid growth of bacteria and use of 1,2-PD for the synthesis of propionic acid. A similar observation was noted for Lactobacillus reuteri. On the other hand, Lactobacillus diolivorans effectively metabolized 1,2-PD which was the sole carbon source in the medium, and the addition of glucose inhibited the synthesis of propionic acid. The experiments also investigated the effect of cobalamin as a diol dehydratase coenzyme involved in the propionic acid synthesis from 1,2-PD whose addition promoted the yield of the reaction in the case of all tested strains. Conclusions: All tested isolates showed the ability to effectively metabolize 1,2-PD (in the presence of cobalamin) and its conversion to propionic acid, which reveals that investigated bacteria meet the essential requirements of microorganisms with a potential application
    corecore