875 research outputs found

    Collider phenomenology of Higgs bosons in Left-Right symmetric Randall-Sundrum models

    Full text link
    We investigate the collider phenomenology of a left-right symmetric Randall-Sundrum model with fermions and gauge bosons in the bulk. We find that the model is allowed by precision electroweak data as long as the ratio of the (unwarped) Higgs vev to the curvature scale is v/k1/4v/k \le 1/4. In that region there can be substantial modifications to the Higgs properties. In particular, the couplings to WWWW and ZZZZ are reduced, the coupling to gluons is enhanced, and the coupling to γγ\gamma\gamma can receive shifts in either direction. The Higgs mass bound from LEP II data can potentially be relaxed to mH80m_H \gtrsim 80 GeV.Comment: 21 pages, 11 figures. Minor changes to numerics; replaced with published versio

    5D UED: Flat and Flavorless

    Full text link
    5D UED is not automatically minimally flavor violating. This is due to flavor asymmetric counter-terms required on the branes. Additionally, there are likely to be higher dimensional operators which directly contribute to flavor observables. We document a mostly unsuccessful attempt at utilizing localization in a flat extra dimension to resolve these flavor constraints while maintaining KK-parity as a good quantum number. It is unsuccessful insofar as we seem to be forced to add brane operators in such a way as to precisely mimic the effects of a double throat warped extra dimension. In the course of our efforts, we encounter and present solutions to a problem common to many extra dimensional models in which fields are "doubly localized:" ultra-light modes. Under scrutiny, this issue seems tied to an intrinsic tension between maintaining Kaluza-Klein parity and resolving mass hierarchies via localization.Comment: 27 pages, 6 figure

    Detecting a Boosted Diboson Resonance

    Full text link
    New light scalar particles in the mass range of hundreds of GeV, decaying into a pair of W/ZW/Z bosons can appear in several extensions of the SM. The focus of collider studies for such a scalar is often on its direct production, where the scalar is typically only mildly boosted. The observed W/ZW/Z are therefore well-separated, allowing analyses for the scalar resonance in a standard fashion as a low-mass diboson resonance. In this work we instead focus on the scenario where the direct production of the scalar is suppressed, and it is rather produced via the decay of a significantly heavier (a few TeV mass) new particle, in conjunction with SM particles. Such a process results in the scalar being highly boosted, rendering the W/ZW/Z's from its decay merged. The final state in such a decay is a "fat" jet, which can be either four-pronged (for fully hadronic W/ZW/Z decays), or may be like a W/ZW/Z jet, but with leptons buried inside (if one of the W/ZW/Z decays leptonically). In addition, this fat jet has a jet mass that can be quite different from that of the W/ZW/Z/Higgs/top quark-induced jet, and may be missed by existing searches. In this work, we develop dedicated algorithms for tagging such multi-layered "boosted dibosons" at the LHC. As a concrete application, we discuss an extension of the standard warped extra-dimensional framework where such a light scalar can arise. We demonstrate that the use of these algorithms gives sensitivity in mass ranges that are otherwise poorly constrained.Comment: 33 pages, 13 figure

    Dedicated Strategies for Triboson Signals from Cascade Decays of Vector Resonances

    Full text link
    New colorless electroweak (EW) charged spin-1 particles with mass of a few TeV arise in numerous extensions of the Standard Model (SM). Decays of such a vector into a pair of SM particles, either fermions or EW bosons, are well studied. Many of these models have an additional scalar, which can lead to (and even dominate in certain parameter regions) a novel decay channel for the heavy vector particles instead - into a SM EW boson and the scalar, which subsequently decays into a SM EW boson pair. In this work, we focus on the scalar being relatively heavy, roughly factor of two lighter than the vector particles, rendering its decay products well separated. Such a cascade decay results in a final state with three isolated bosons. We argue that for this "triboson" signal the existing diboson searches are not quite optimal due to combinatorial ambiguity for three identical bosons, and in addition, due to a relatively small signal cross-section determined by the heaviness of the decaying vector particle. In order to isolate the signal, we demonstrate that tagging all three bosons, followed by use of the full triboson invariant mass distribution as well as that of appropriate subsets of dibosons, is well motivated. We develop these general strategies in detail within the context of a specific class of models that are based on extensions of the standard warped extra-dimensional scenario. We also point out that a similar analysis would apply to models with an enlarged EW gauge sector in four dimensions, even if they involve a different Lorentz structure for the relevant couplings

    Searching for the Kaluza-Klein Graviton in Bulk RS Models

    Get PDF
    The best-studied version of the RS1 model has all the Standard Model particles confined to the TeV brane. However, recent variants have the Standard Model fermions and gauge bosons located in the bulk five-dimensional spacetime. We study the potential reach of the LHC in searching for the lightest KK partner of the graviton in the most promising such models in which the right-handed top is localized very near the TeV brane and the light fermions are localized near the Planck brane. We consider both detection and the establishment of the spin-2 nature of the resonance should it be found.Comment: 17 pages, 6 figures - JHEP published version, figures added, branching ratio correcte

    Novel candidate genes underlying extreme trophic specialization in Caribbean pupfishes

    Get PDF
    The genetic changes responsible for evolutionary transitions from generalist to specialist phenotypes are poorly understood. Here we examine the genetic basis of craniofacial traits enabling novel trophic specialization in a sympatric radiation of Cyprinodon pupfishes endemic to San Salvador Island, Bahamas. This recent radiation consists of a generalist species and two novel specialists: a small-jawed "snail-eater" and a large-jawed "scale-eater." We genotyped 12 million single nucleotide polymorphisms (SNPs) by whole-genome resequencing of 37 individuals of all three species from nine populations and integrated genome-wide divergence scans with association mapping to identify divergent regions containing putatively causal SNPs affecting jaw size-the most rapidly diversifying trait in this radiation. A mere 22 fixed variants accompanied extreme ecological divergence between generalist and scale-eater species. We identified 31 regions (20 kb) containing variants fixed between specialists that were significantly associated with variation in jaw size which contained 11 genes annotated for skeletal system effects and 18 novel candidate genes never previously associated with craniofacial phenotypes. Six of these 31 regions showed robust signs of hard selective sweeps after accounting for demographic history. Our data are consistent with predictions based on quantitative genetic models of adaptation, suggesting that the effect sizes of regions influencing jaw phenotypes are positively correlated with distance between fitness peaks on a complex adaptive landscape

    Low-scale warped extra dimension and its predilection for multiple top quarks

    Get PDF
    Within warped extra dimension models that explain flavor through geometry, flavor changing neutral current constraints generally force the Kaluza-Klein scale to be above many TeV. This creates tension with a natural electroweak scale. On the other hand, a much lower scale compatible with precision electroweak and flavor changing neutral current constraints is allowed if we decouple the Kaluza-Klein states of Standard Model gauge bosons from light fermions clightcb0.5c_{\rm light}\simeq c_b\simeq 0.5 bulk mass parameters). The main signature for this approach is four top quark production via the Kaluza-Klein excitations' strong coupling to top quarks. We study single lepton, like-sign dilepton, and trilepton observables of four-top events at the Large Hadron Collider. The like-sign dilepton signature typically has the largest discovery potential for a strongly coupled right-handed top case (M_{KK} \sim 2-2.5 \TeV), while single lepton is the better when the left-handed top couples most strongly (M_{KK} \sim 2 \TeV). We also describe challenging lepton-jet collimation issues in the like-sign dilepton and trilepton channels. An alternative single lepton observable is considered which takes advantage of the many bottom quarks in the final state. Although searches of other particles may compete, we find that four top production via Kaluza-Klein gluons is most promising in a large region of this parameter space.Comment: 35 pages, 8 figures. discussions improved, references adde

    An A4 flavor model for quarks and leptons in warped geometry

    Get PDF
    We propose a spontaneous A4 flavor symmetry breaking scheme implemented in a warped extra dimensional setup to explain the observed pattern of quark and lepton masses and mixings. The main advantages of this choice are the explanation of fermion mass hierarchies by wave function overlaps, the emergence of tribimaximal neutrino mixing and zero quark mixing at the leading order and the absence of tree-level gauge mediated flavor violations. Quark mixing is induced by the presence of bulk flavons, which allow for cross-brane interactions and a cross-talk between the quark and neutrino sectors, realizing the spontaneous symmetry breaking pattern A4 --> nothing first proposed in [X.G.\,He, Y.Y.\,Keum, R.R.\,Volkas, JHEP{0604}, 039 (2006)]. We show that the observed quark mixing pattern can be explained in a rather economical way, including the CP violating phase, with leading order cross-interactions, while the observed difference between the smallest CKM entries V_{ub} and V_{td} must arise from higher order corrections. We briefly discuss bounds on the Kaluza-Klein scale implied by flavor changing neutral current processes in our model and show that the residual little CP problem is milder than in flavor anarchic models.Comment: 34 pages, 2 figures; version published in JHE

    Composite Leptoquarks at the LHC

    Get PDF
    If electroweak symmetry breaking arises via strongly-coupled physics, the observed suppression of flavour-changing processes suggests that fermion masses should arise via mixing of elementary fermions with composite fermions of the strong sector. The strong sector then carries colour charge, and may contain composite leptoquark states, arising either as TeV scale resonances, or even as light, pseudo-Nambu-Goldstone bosons. The latter, since they are coupled to colour, get a mass of the order of several hundred GeV, beyond the reach of current searches at the Tevatron. The same generic mechanism that suppresses flavour-changing processes suppresses leptoquark-mediated rare processes, making it conceivable that the many stringent constraints may be evaded. The leptoquarks couple predominantly to third-generation quarks and leptons, and the prospects for discovery at LHC appear to be good. As an illustration, a model based on the Pati-Salam symmetry is described, and its embedding in models with a larger symmetry incorporating unification of gauge couplings, which provide additional motivation for leptoquark states at or below the TeV scale, is discussed.Comment: 10 pp, version to appear in JHE
    corecore