24,037 research outputs found
On wavenumber spectra for sound within subsonic jets
This paper clarifies the nature of sound spectra within subsonic jets. Three
problems, of increasing complexity, are presented. Firstly, a point source is
placed in a two-dimensional plug flow and the sound field is obtained
analytically. Secondly, a point source is embedded in a diverging axisymmetric
jet and the sound field is obtained by solving the linearised Euler equations.
Finally, an analysis of the acoustic waves propagating through a turbulent jet
obtained by direct numerical simulation is presented. In each problem, the
pressure or density field are analysed in the frequency-wavenumber domain. It
is found that acoustic waves can be classified into three main
frequency-dependent groups. A physical justification is provided for this
classification. The main conclusion is that, at low Strouhal numbers, acoustic
waves satisfy the d'Alembertian dispersion relation.Comment: 20 pages, 9 figure
Magneto-optical rotation of spectrally impure fields and its nonlinear dependence on optical density
We calculate magneto-optical rptation of spectrally impure fileds in an
optically thick cold atmic medium. We show that the spectral impurity leads to
non-linear dependence of the rotation angle on optical density. Using our
calculations, we provide a quanttative analysis of the recent experimental
results of G. Labeyrie et al. [Phys. Rev. A 64, 033402 (2001)] using cold
Rb atoms.Comment: 6 pages, 5 Figures, ReVTeX4, Submitted to PR
Aspects of Integrability in N =4 SYM
Various recently developed connections between supersymmetric Yang-Mills
theories in four dimensions and two dimensional integrable systems serve as
crucial ingredients in improving our understanding of the AdS/CFT
correspondence. In this review, we highlight some connections between
superconformal four dimensional Yang-Mills theory and various integrable
systems. In particular, we focus on the role of Yangian symmetries in studying
the gauge theory dual of closed string excitations. We also briefly review how
the gauge theory connects to Calogero models and open quantum spin chains
through the study of the gauge theory duals of D3 branes and open strings
ending on them. This invited review, written for Modern Physics Letters-A, is
based on a seminar given at the Institute of Advanced Study, Princeton.Comment: Invited brief review for Mod. Phys. Lett. A based on a talk at I.A.S,
Princeto
The Electromagnetically Induced Transparency in Mechanical Effects of Light
We consider the dynamical behavior of a nanomechanical mirror in a
high-quality cavity under the action of a coupling laser and a probe laser. We
demonstrate the existence of the analog of electromagnetically induced
transparency (EIT) in the output field at the probe frequency. Our calculations
show explicitly the origin of EIT-like dips as well as the characteristic
changes in dispersion from anomalous to normal in the range where EIT dips
occur. Remarkably the pump-probe response for the opto mechanical system shares
all the features of the Lambda system as discovered by Harris and
collaborators.Comment: 4 pages, 5 figure
Charge transport in a nonlinear, three--dimensional DNA model with disorder
We study the transport of charge due to polarons in a model of DNA which
takes in account its 3D structure and the coupling of the electron wave
function with the H--bond distortions and the twist motions of the base pairs.
Perturbations of the ground states lead to moving polarons which travel long
distances. The influence of parametric and structural disorder, due to the
impact of the ambient, is considered, showing that the moving polarons survive
to a certain degree of disorder. Comparison of the linear and tail analysis and
the numerical results makes possible to obtain further information on the
moving polaron properties.Comment: 9 pages, 2 figures. Proceedings of the conference on "Localization
and energy transfer in nonlinear systems", June 17-21, 2002, San Lorenzo de
El Escorial, Madrid, Spain. To be publishe
Automated flight test management system
The Phase 1 development of an automated flight test management system (ATMS) as a component of a rapid prototyping flight research facility for artificial intelligence (AI) based flight concepts is discussed. The ATMS provides a flight engineer with a set of tools that assist in flight test planning, monitoring, and simulation. The system is also capable of controlling an aircraft during flight test by performing closed loop guidance functions, range management, and maneuver-quality monitoring. The ATMS is being used as a prototypical system to develop a flight research facility for AI based flight systems concepts at NASA Ames Dryden
Nonlinear charge transport mechanism in periodic and disordered DNA
We study a model for polaron-like charge transport mechanism along DNA
molecules with emphasis on the impact of parametrical and structural disorder.
Our model Hamiltonian takes into account the coupling of the charge carrier to
two different kind of modes representing fluctuating twist motions of the base
pairs and H-bond distortions within the double helix structure of
DNA. Localized stationary states are constructed with the help of a
nonlinear map approach for a periodic double helix and in the presence of
intrinsic static parametrical and/or structural disorder reflecting the impact
of ambient solvent coordinates. It is demonstrated that charge transport is
mediated by moving polarons respectively breather compounds carrying not only
the charge but causing also local temporal deformations of the helix structure
through the traveling torsion and bond breather components illustrating the
interplay of structure and function in biomolecules.Comment: 23 pages, 13 figure
Electromagnetically Induced Transparency from Two Phonon Processes in Quadratically Coupled Membranes
We describe how electromagnetically induced transparency can arise in
quadratically coupled optomechanical systems. Due to quadratic coupling the
underlying optical process involves a two phonon process in optomechanical
system and this two phonon process makes the mean amplitude, which plays the
role of atomic coherence in traditional EIT, zero. We show how the fluctuation
in displacement can play a role similar to atomic coherence and can lead to
EIT-like effects in quadratically coupled optomechanical systems. We show how
such effects can be studied using the existing optomechanical systems.Comment: 5 pages,4 figure
- …