7 research outputs found

    Microscopic approach to coherent population trapping state and its relaxation in a dense medium

    Get PDF
    Using a master equation with cooperative interaction of radiative nature included, we demonstrate the generation and relaxation characteristics of the coherent population trapping state. We also show how the microscopic master equation in the mean field approximation leads to density matrix equations obtained from local field considerations

    Non-linear wave packet dynamics of coherent states of various symmetry groups

    Get PDF
    We present a comparative study of the non-linear wave packet dynamics of two-mode coherent states of the Heisenberg-Weyl group, the SU(1,1) group and the SU(2) group under the action of a model anharmonic Hamiltonian. In each case, we find certain generic signatures of non-linear evolution such as quick onset of decoherence followed by Schrodinger cat formation and revival. We also report important differences in the evolution of coherent states belonging to different symmetry groups

    Quantum sensing of open systems: Estimation of damping constants and temperature

    Full text link
    We determine quantum precision limits for estimation of damping constants and temperature of lossy bosonic channels. A direct application would be the use of light for estimation of the absorption and the temperature of a transparent slab. Analytic lower bounds are obtained for the uncertainty in the estimation, through a purification procedure that replaces the master equation description by a unitary evolution involving the system and ad hoc environments. For zero temperature, Fock states are shown to lead to the minimal uncertainty in the estimation of damping, with boson-counting being the best measurement procedure. In both damping and temperature estimates, sequential pre-thermalization measurements, through a stream of single bosons, may lead to huge gain in precision

    Mixed electromagnetically and self-induced transparency

    Get PDF
    We show that application of self-induced transparency (SIT) solitons as a driving field in V -type electromagnetically induced transparency (EIT) leads to "mixed induced transparency" (MIT) that nicely combines the best features of both SIT and EIT

    Evaluation of prognostic risk models for postoperative pulmonary complications in adult patients undergoing major abdominal surgery: a systematic review and international external validation cohort study

    Get PDF
    Background Stratifying risk of postoperative pulmonary complications after major abdominal surgery allows clinicians to modify risk through targeted interventions and enhanced monitoring. In this study, we aimed to identify and validate prognostic models against a new consensus definition of postoperative pulmonary complications. Methods We did a systematic review and international external validation cohort study. The systematic review was done in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched MEDLINE and Embase on March 1, 2020, for articles published in English that reported on risk prediction models for postoperative pulmonary complications following abdominal surgery. External validation of existing models was done within a prospective international cohort study of adult patients (≥18 years) undergoing major abdominal surgery. Data were collected between Jan 1, 2019, and April 30, 2019, in the UK, Ireland, and Australia. Discriminative ability and prognostic accuracy summary statistics were compared between models for the 30-day postoperative pulmonary complication rate as defined by the Standardised Endpoints in Perioperative Medicine Core Outcome Measures in Perioperative and Anaesthetic Care (StEP-COMPAC). Model performance was compared using the area under the receiver operating characteristic curve (AUROCC). Findings In total, we identified 2903 records from our literature search; of which, 2514 (86·6%) unique records were screened, 121 (4·8%) of 2514 full texts were assessed for eligibility, and 29 unique prognostic models were identified. Nine (31·0%) of 29 models had score development reported only, 19 (65·5%) had undergone internal validation, and only four (13·8%) had been externally validated. Data to validate six eligible models were collected in the international external validation cohort study. Data from 11 591 patients were available, with an overall postoperative pulmonary complication rate of 7·8% (n=903). None of the six models showed good discrimination (defined as AUROCC ≥0·70) for identifying postoperative pulmonary complications, with the Assess Respiratory Risk in Surgical Patients in Catalonia score showing the best discrimination (AUROCC 0·700 [95% CI 0·683–0·717]). Interpretation In the pre-COVID-19 pandemic data, variability in the risk of pulmonary complications (StEP-COMPAC definition) following major abdominal surgery was poorly described by existing prognostication tools. To improve surgical safety during the COVID-19 pandemic recovery and beyond, novel risk stratification tools are required. Funding British Journal of Surgery Society

    Contributory presentations/posters

    No full text
    corecore