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1 Introduction

Among the most important milestones concerning propagation of coherent optical pulses
through multilevel absorbers are self-induced transparency in two-level systems by Mc-
Call and Hahn [1, 2], simultons by Konopnicki and Eberly [3], counterintuitive pulse
sequences by Oreg, Hioe and Eberly [4, 5], matched pulses via electromagnetically in-
duced transparency (EIT) by Harris [6, 7], and the dressed-state pulses by Eberly, Pons,
and Haq [8]. The phenomena of matched and dressed-state pulses are linked to elec-
tromagnetically induced transparency (EIT), which is particularly interesting because
it offers a wide variety of applications ranging from lasers without population inversion
(for the earliest papers on EIT/LWI see [9, 10, 11, 12, 13], for reviews on EIT/LWI see
[14, 15, 16, 17, 18, 19]) to new trends in nonlinear optics [20, 21, 22, 23, 24, 25].

The EIT of a weak probe pulse relies on a two-photon coherence which is induced by
the joint action of the probe field and a strong driving field in a three-level system. In
order to make an optically thick medium transparent, the driving field must preserve its
intensity all along the path. This condition appears rather demanding, especially for V -
type systems, because the driving field couples fully populated state and empty excited
state of the system. This is the main drawback of V EIT. The strong drive field provides
the transparency for the probe field, but itself remains subject to resonant absorption
and dispersion. In order to fix this we appeal to SIT [1, 2, 26, 27, 28, 29, 30] and apply
the effect to achieve transparency of the driving transition in V EIT experiments. Then,
both transitions appear to be transparent, one — in the sense of SIT, the other — in
the sense of EIT. Such ”mixed-induced transparency” (MIT) constitutes the subject of
our study.

Previous related studies are associated with lossless propagation of simultons in
three-level systems [3, 31, 32, 33] and N -type systems [34], Raman amplification of
ultrashort pulses [35] in V configuration, theoretical and experimental studies on trans-
parency enhancement for an ultrashort weak-pulse propagation in an inhomogeneously-
broadened V -type medium [36, 37], and propagation of ultrashort pulses in phaseonium
[38].

Equivalent durations of involved pulses is common feature of the above studies. In
contrast, our interest here will be in suppression of absorption for both weak and long
probe pulse when a sequence of short 2π-pulses drives the adjacent transition of the
V -type atom, as shown in Fig. 1. We will demonstrate that the application of a se-
quence of 2π-pulses as the drive field in V -type configuration results in suppression of
population transfer produced by a weak long pulse, thereby creating conditions of trans-
parency for the weak field. During propagation, the population transfer on the probe
transition is continuously minimized by a coherent 2π-pulse-induced rearrangement of
energy (reshaping) inside the probe pulse.

2 Motivation

Let us consider a V-type three-level system with the ground state |b〉 and excited states
|a〉 and |c〉, as shown in Fig. 1. Transition |b〉 ↔ |c〉 of frequency ωbc is driven by a field
EΩ(z, t) = EΩ(z, t) exp(ikΩz − iνΩt). A probe field Eα(z, t) = Eα(z, t) exp(ikαz − iναt)
is applied to the transition |b〉 ↔ |a〉 of frequency ωab. Here EΩ(z, t) and Eα(z, t) are the
slowly varying envelopes of the electric field. They are related to the Rabi frequencies
Ω and α according to EΩ = h̄Ω/℘cb and Eα = h̄α/℘ab, where ℘cb and ℘ab are dipole
matrix elements of the transitions |c〉 ↔ |b〉 and |a〉 ↔ |b〉. The carrier waves have wave
numbers kΩ and kα, and frequencies νΩ and να.

We start from a simple example which discloses advantages arising from the combi-
nation of SIT with EIT: a single atom of V -type with a weak long probe pulse applied
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Fig. 1. Pictorial illustration of MIT via a V -type atom under the action of a sequence
of 2π-pulses (Ω) and a continuous probe field (α). The overall effect of a 2π-pulse
applied to c ↔ b transition is in flipping the sign of the wave function of the ground
state.

at one leg of the system and a sequence of strong sharp pulses driving the other tran-
sition, as shown in Fig. 1. The probability of the atomic decay is proportional to the
population of the excited state. Hence, the more the atom is excited by the weak pulse
to the upper state |a〉, the larger rate of spontaneous decay is expected. We shall show
that while the adjacent transition |c〉 ↔ |b〉 is driven by strong pulses, the excitation of
|a〉 state by the weak pulse is greatly suppressed. Therefore, the absorption rate will be
proportionally decreased.

The action of the probe pulse to promote atoms from |b〉 to |a〉, is described by the
Hamiltonian

V = h̄
α(t)
2

(|a〉〈b|ei∆t + adj.
)
, (1)

with ∆ = ωab − να as the offset of the field carrier frequency and the optical transition.
Expanding state vector |Ψt〉 in eigenstates of the atomic Hamiltonian as |Ψt〉 = a(t)|a〉+
b(t)|b〉+ c(t)|c〉 and substituting into the Schrödinger equation gives the standard set of
coupled equations for the probability amplitudes

ȧ = − i

2
α ei∆tb , (2)

ḃ = − i

2
α e−i∆ta , (3)

ċ = 0 . (4)

Only three relevant states |a〉, |b〉, and |c〉 are kept for our discussion.
It is convenient to represent the time evolution of the atomic state |Ψt〉 by unitary

transformation |Ψt〉 = Uα(t)|Ψ0〉 of initial state |Ψ0〉 given by

Uα(t) = A|a〉〈a| + B|b〉〈b|+ |c〉〈c| + (C|a〉〈b| − adj.) . (5)

Time-dependent coefficients A, B and C are derived from (2)-(4):

A(t) =
(

cos
α̃

2
t − i

∆
α̃

cos
α̃

2
t

)
exp

[
i
∆
2

t

]
(6)

B(t) =
(

cos
α̃

2
t + i

∆
α̃

cos
α̃

2
t

)
exp

[
−i

∆
2

t

]
(7)

C(t) = −i
α

α̃
sin

α̃

2
t exp

[
i
∆
2

t

]
(8)

with α̃ =
√

α2 + ∆2 as effective Rabi frequency.
For simplicity, we consider the case of exact resonance. Then, Eqs. (5)-(8) are reduced

to
Uα(t) = cos

[α

2
t
]
(|a〉〈a| + |b〉〈b|) − i sin

[α

2
t
]

σx(a, b) + |c〉〈c| (9)
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with σx(a, b) ≡ |a〉〈b|+ |b〉〈a|. It is instructive for further derivations to write Eq. (9) as

Uα(t) = exp
[
−i

α

2
t σx

]
+ |c〉〈c| =

N∏
n=0

exp
[
−i

α

2
τ σx

]
+ |c〉〈c| , (10)

Bearing in mind further application of a sequence of N 2π-pulses, the time interval t
in (10) is divided into N equal parts, each of duration τ . At time t = Nτ = π/α, the
atom starting in state |b〉 will be fully excited to the upper state |a〉. This is a direct
indication of high rate of absorption of the probe field (if the latter would have been
included in the model).

We now switch on a train of strong short pulses coupling |b〉 and |c〉 states. The pulses
are separated by equal intervals τ and their durations τp are shorter than τ , see inset of
Fig. 2. Since, the driving pulses are much shorter and stronger than the probe pulse, we
may, to a reasonable approximation, ignore the dynamics on the probe transition during
τp interval. Then, evolution operator during the excitation of the |c〉 ↔ |b〉 transition
reads as

Uθ(t) = cos
[
θ(t)
2

]
(|b〉〈b| + |c〉〈c|) + |a〉〈a| − i sin

[
θ(t)
2

]
(|b〉〈c| + |c〉〈b|) , (11)

where θ(t) ≡ (℘ac/h̄)
∫ EΩ(t′)dt′. For specific pulses which span a total area of 2π, i.e.

θ = 2π after integration over all pulse envelope, the evolution operator reduces to a
simple form,

U2π(t) = |a〉〈a| − (|b〉〈b| + |c〉〈c|) . (12)

The total evolution of the single atom can be written as a successive alternation of
|a〉 ↔ |b〉 and |c〉 ↔ |b〉 excitations: first, caused solely by the weak pulse, and the second
— solely by the 2π-pulse,

U(t) = U
(N)
2π Uα(τ)U (N−1)

2π . . . U
(2)
2π Uα(τ)U (1)

2π Uα(τ) . (13)

The unique feature of a 2π-pulse is in the coherent excitation and de-excitation of an
atom in such a way, that the total population difference comes back to its original
value after the pulse passed. The only change is in the π phase shift of the lower state.
A successive application of two 2π-pulses returns the system accurately back to the
original state. Then, it appears quite natural due to the symmetry of the problem that
product of four evolution matrices U2πUα(τ)U2πUα(τ) gives a characteristic evolution
block. The product of the first three yields U2πUα(τ)U2π = exp(iα

2 σxτ), and after adding
the fourth matrix one finally gets

U2πUα(τ)U2πUα(τ) = exp
(
i
α

2
σxτ

)
exp

(
−i

α

2
σxτ

)
= 1 . (14)

So, the atom comes back to the original state. Certainly, Eq. (13) gives the same result
for any even N .

Concluding, in contrast to single weak pulse propagation where the analysis shows
full excitation of |a〉 state in time t = π/α, the SIT-assisted dynamics provides no
population transfer from the lower |b〉 state during the same interval of time. Thus, for
the latter configuration, the weak pulse remains insensitive to any decay process from
the upper state. This is the keystone result which gives rise to new type of transparency
— MIT.
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Fig. 2. Time dependent plots of intensity of the probe pulse showing the effect
of propagation over 2 Beer’s lengths in V -type system driven by a sequence of
eleven 2π-pulses (shown in the inset). In all plots local time (t − z/v)/τp (with v
as phase velocity of light in the medium) is measured in units of the strong pulse
duration τp and distance in Beer’s lengths, defined here as β ≡ (κΩτp)−1. For Rabi
frequencies of the strong field, Ω, and the weak probe, α, we define intensity as
|Ωτp|2 and |ατp|2, correspondingly. Initially, the weak pulse has a super-Gaussian
shape α = 0.01 exp[−(t/80τp)8], see the snapshot at βL = 0, and the strong pulses
are identical 2π-solitons of self-induced transparency separated by 10 their own

durations from each other: Ω =
∑5

n=−5
sech[(t + 10nτp)/τp], see inset.
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3 Self-enhancement of MIT during the propagation

In this section, we turn to a more accurate description of the transparency phenomenon
by lifting major approximations assumed in the above analysis while keeping similarity
with the original model as close as possible. Furthermore, generalizing the model from
a single atom (thin layer) description to an optically thick V -type medium, we thereby
introduce the important propagation effects into our consideration. The latter will allow
us to follow evolution of the system, and finally conclude that the transparency is
enhanced through the self-consistent dynamics of the matter and the fields.

For proper accounting for propagation effects, the matter equations driven by the
optical fields should be supplemented with field equations driven by polarization of
the matter. In the slowly varying envelope approximation, the temporal and spatial
evolution of the field envelopes is governed by wave equations:[

∂

∂z
+

nΩ

c

∂

∂t

]
Ω(t, z) = iκΩρcb , (15)

[
∂

∂z
+

nα

c

∂

∂t

]
α(t, z) = iκαρab , (16)

with propagation constants

κΩ = kΩ℘2
cbN/ε0h̄ nΩ and κα = kα℘2

abN/ε0h̄ nα . (17)

ρab and ρcb are off-diagonal density matrix elements in the rotating frame, N is the
density of resonant atoms, nΩ and nα are host refractive indices at frequencies of the
pump and probe fields, respectively. Instead of Schrödinger description of the V -type
atom in section II, we shall use a more general, density matrix approach [39]. The
resultant coupled set of the field and matter equations is solved numerically.

For simplicity, coupling constants and nonresonant refractive indices on the two
transitions are put equal: κΩ = κα and nΩ = nα. We consider a weak pulse with a
super-Gaussian shape shown in Fig. 2 at βL = 0. Duration of the pulse is rather long
in a sense that area under its envelope is only slightly less than π, but it is still shorter
than any decay process in the system. In what following, we shall ignore all relaxation
processes since they are not relevant to our discussion. The inset of Fig. 3 shows a
significant population transfer produced by the pulse: almost all atoms appear to be
excited. The absorbed energy is scattered very rapidly resulting in fast decay rate and
total dispersion of the weak pulse, see curve (1) in Fig. 4(a). The pulse area also vanishes
sharply, see curve (1) in Fig. 4(b).

Following analysis in the previous section we now apply a driving field in the form
of a sequence of 2π-pulses on the adjacent transition. Bearing in mind further consid-
eration of propagation effects, among all possible 2π-pulses we choose those which have
a sech-shape envelope, see inset in Fig. 2. As has been shown by Matulic and Eberly
in [28], they are the only shape-preserving 2π-solutions for an optically thick two-level
absorber. Switching on the driving field dramatically decreases the amount of popula-
tion transfer of atoms to |a〉 state, compare Fig. 3 at βL = 0 and inset. Certainly, the
suppression cannot be full as it is in the analytic model, since the 2π-pulses here are
neither infinitely short nor infinitely strong. Nevertheless, the transparency effect finds
its clear manifestation.

By taking into account propagation effects, we step into a domain which is beyond the
analytical predictions. We find that the transparency effect is enhanced even more when
the pulses are allowed to propagate deeper into the medium. Snapshots of population
at βL = 0.5, βL = 1, βL = 1.5, and βL = 2 in Fig. 3 display orders of magnitude less
excitations than it is at the entrance, i.e. at βL = 0. Energy of the weak pulse experiences
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Fig. 3. Time dependent plots of population of the |a〉 state at the input and after
propagating 0.5, 1, 1.5, and 2 Beer’s lengths. Inset shows time evolution of ρaa at
the entrance plane (βL = 0) in absence of driving pulses on the |c〉 ↔ |b〉 transition.

extremely slow decay, see curve (2) in Fig. 4(a), and clearly the loss of energy (which
is less than a half of initial value) cannot be the reason for such enormous decrease in
population transfer.

The explanation of MIT starts with the observation of the ”pulse locking” effect,
where a strong 2π-pulse and a weak pulse propagate together with the same group
velocity, and without a substantial change of shape while propagating, [35]. Fig. 2 shows
how the long weak pulse splits into a sequence of short more intense sub-pulses, the
peaks of which are synchronized with locations of 2π-pulses. Energy of the probe pulse
is continuously ”drawn” into the regions where intensity of the driving field reaches
maximum, so that such master-slave combination of the two fields propagates through
the medium with group velocity dictated by the 2π-pulses.

The effect of pulse locking assures no dispersive breakdown of a weak pulse and si-
multaneously its perfect spatio-temporal synchronization with a pump pulse. This cre-
ates ideal conditions for Raman amplification of ultrashort pulses in a V -type medium.
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Fig. 4. Energy and Area versus distance for the weak pulse: (1) with no driving
field; (2) with driving field in the form of 2π-pulses, see figure caption for Fig. 2.
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Ref. [35] reports about 100% efficiency of the amplification mechanism. Here, the pulse
locking also constitutes a necessary condition for the enhanced transparency by pre-
venting a dispersion of the weak pulse, however the main source of the transparency,
that is protection against spontaneous emission, is of different nature, see also [40].

The less atoms are excited to the upper state, the less is the rate of the spontaneous
emission, and therefore the better is the transparency for the field. That is, the true
signature of the transparency is vanishing fraction of atoms excited to the upper state.
With this criterion in hand, we compare the amount of population transfer shown in
Fig. 3 before (at βL = 0) reshaping of the weak pulse and after (say at βL = 2). So,
the population transfer appears to be greatly suppressed solely due to redistribution of
energy inside the pulse. It is the key conclusion of the present Letter that the matter-field
interaction self-organizes the shape of the weak field in such a way that the population
of |a〉 state is minimized.

4 Discussion

We describe the new type of transparency, MIT, which is induced for a weak long pulse
by a sequence of 2π-pulses applied on the adjacent transition of the medium of V -
configuration. Based on calculations of the amount of population excited by the weak
pulse to the upper state, we estimate the efficiency of the transparency effect. Analytical
derivations for a single atom driven by train of infinitely sharp (δ-function-like) 2π-pulses
predict perfect transparency for the weak field. Corresponding numerical computations
for a non-ideal case confirms appearance of the transparency, though some residual
excitation of |a〉 state arises due to finite intensity of the driving pulses. Then, taking
propagation dynamics into account, the residual excitation is shown to be suppressed
even further. The transparency enhancement is due to the coherent SIT-pulse-induced
rearrangement of energy inside the weak pulse that ultimately results in minimization
of the population transfer to the upper state |a〉.

The left plot in Fig. 4 displays a decay of energy of the probe pulse over distance of
50 Beer’s lengths. The difference in 5 orders of magnitude between scenarios of free evo-
lution and MIT-assisted propagation provides another direct proof of the transparency
effect. Curve (1) on the right plot in Fig. 4 shows the evolution of area of the probe pulse
towards 0π, which is characteristic ultimate value for a weak probe field propagating
in a two-level medium. In contrast, in presence of 2π-pulses on the adjacent transition,
see curve (2), the pulse area is stabilized near a constant nonzero value. This particular
number is not unique and varies for different boundary conditions. Many numerical runs
have not revealed a noticeable regularity in evolution of the pulse area like the famous
Area Theorem for two-level systems, [1, 2, 41].
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The pulse locking and the redistribution of energy inside the probe pulse are evidently
of a coherent origin. The suppression of population transfer and associated decrease in
energy loss of the probe field cannot be explained solely in terms of AC-Stark effect pro-
duced by a strong pulse driving the coupled transition. The transient coherent evolution
in MIT will be discussed in detail elsewhere.

The idea of combination of SIT and EIT and the manifestation of its power with
the above simple model, gives rises to further intriguing questions. What happens if
the transitions are Doppler-broadened? How crucial is the condition of the two-photon
resonance? What is the role of the two-photon Doppler effect? Such questions naturally
follows from SIT physics which is known for its unique ability of making an inhomo-
geneously broadened medium transparent. On the other hand, the problem gives us a
good chance to come back to that “golden oldie” SIT [26, 27, 28, 29, 30, 42], and to
pick up some clues on further development of the subject.

We learn from Matulic and Eberly [28] that there are no steady-state single-pulse
solutions to the absorber problem other than a 2π sech pulse. However, there are non-
shape-preserving pulses described by Lamb in [29] which have total envelope area equal
to 4π or 6π, for example. There are also 0π-pulses with non-stationary oscillating am-
plitude [42]. The infinite pulse-train solutions described by Eberly in [27] as early as in
1969, are especially relevant to our discussion. The train of pulses has an area of 2π∞,
and the envelope shape is determined by certain elliptic functions. Physically such so-
lutions correspond to a continual exchange of energy from a steady-state optical wave
to the atoms and back. In contrast to our sequence of widely separated 2π-pulses, the
elliptic functions provides a closer spacing between humps with no return to zero. Being
applied to the driving transition instead of the 2π-pulse sequence the 2π∞-train may
result in even better transparency for the weak field.
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