10 research outputs found

    Multipoint Detection of GRB221009A’s Propagation through the Heliosphere

    Get PDF
    We present the results of processing the effects of the powerful gamma-ray burst GRB221009A captured by the charged particle detectors (electrostatic analyzers and solid-state detectors) on board spacecraft at different points in the heliosphere on 2022 October 9. To follow the GRB221009A propagation through the heliosphere, we used the electron and proton flux measurements from solar missions Solar Orbiter and STEREO-A; Earth’s magnetosphere and solar wind missions THEMIS and Wind; meteorological satellites POES15, POES19, and MetOp3; and MAVEN—a NASA mission orbiting Mars. GRB221009A had a structure of four bursts: the less intense Pulse 1—the triggering impulse—was detected by gamma-ray observatories at T 0 = 13:16:59 UT (near the Earth); the most intense Pulses 2 and 3 were detected on board all the spacecraft from the list; and Pulse 4 was detected in more than 500 s after Pulse 1. Due to their different scientific objectives, the spacecraft, whose data were used in this study, were separated by more than 1 au (Solar Orbiter and MAVEN). This enabled the tracking of GRB221009A as it was propagating across the heliosphere. STEREO-A was the first to register Pulse 2 and 3 of the GRB, almost 100 s before their detection by spacecraft in the vicinity of Earth. MAVEN detected GRB221009A Pulses 2, 3, and 4 at the orbit of Mars about 237 s after their detection near Earth. By processing the observed time delays, we show that the source location of the GRB221009A was at R.A. 288.°5, decl. 18.°5 ± 2° (J2000)

    Parker solar probe: four years of discoveries at solar cycle minimum

    Get PDF
    Launched on 12 Aug. 2018, NASA’s Parker Solar Probe had completed 13 of its scheduled 24 orbits around the Sun by Nov. 2022. The mission’s primary science goal is to determine the structure and dynamics of the Sun’s coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what processes accelerate energetic particles. Parker Solar Probe returned a treasure trove of science data that far exceeded quality, significance, and quantity expectations, leading to a significant number of discoveries reported in nearly 700 peer-reviewed publications. The first four years of the 7-year primary mission duration have been mostly during solar minimum conditions with few major solar events. Starting with orbit 8 (i.e., 28 Apr. 2021), Parker flew through the magnetically dominated corona, i.e., sub-Alfvénic solar wind, which is one of the mission’s primary objectives. In this paper, we present an overview of the scientific advances made mainly during the first four years of the Parker Solar Probe mission, which go well beyond the three science objectives that are: (1) Trace the flow of energy that heats and accelerates the solar corona and solar wind; (2) Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind; and (3) Explore mechanisms that accelerate and transport energetic particles

    Parker Solar Probe: Four Years of Discoveries at Solar Cycle Minimum

    No full text
    Launched on 12 Aug. 2018, NASA’s Parker Solar Probe had completed 13 of its scheduled 24 orbits around the Sun by Nov. 2022. The mission’s primary science goal is to determine the structure and dynamics of the Sun’s coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what processes accelerate energetic particles. Parker Solar Probe returned a treasure trove of science data that far exceeded quality, significance, and quantity expectations, leading to a significant number of discoveries reported in nearly 700 peer-reviewed publications. The first four years of the 7-year primary mission duration have been mostly during solar minimum conditions with few major solar events. Starting with orbit 8 (i.e., 28 Apr. 2021), Parker flew through the magnetically dominated corona, i.e., sub-Alfvénic solar wind, which is one of the mission’s primary objectives. In this paper, we present an overview of the scientific advances made mainly during the first four years of the Parker Solar Probe mission, which go well beyond the three science objectives that are: (1) Trace the flow of energy that heats and accelerates the solar corona and solar wind; (2) Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind; and (3) Explore mechanisms that accelerate and transport energetic particles

    Very-Low-Frequency transmitters bifurcate energetic electron belt in near-earth space.

    No full text
    Very-Low-Frequency (VLF) transmitters operate worldwide mostly at frequencies of 10-30 kilohertz for submarine communications. While it has been of intense scientific interest and practical importance to understand whether VLF transmitters can affect the natural environment of charged energetic particles, for decades there remained little direct observational evidence that revealed the effects of these VLF transmitters in geospace. Here we report a radially bifurcated electron belt formation at energies of tens of kiloelectron volts (keV) at altitudes of ~0.8-1.5 Earth radii on timescales over 10 days. Using Fokker-Planck diffusion simulations, we provide quantitative evidence that VLF transmitter emissions that leak from the Earth-ionosphere waveguide are primarily responsible for bifurcating the energetic electron belt, which typically exhibits a single-peak radial structure in near-Earth space. Since energetic electrons pose a potential danger to satellite operations, our findings demonstrate the feasibility of mitigation of natural particle radiation environment
    corecore