7 research outputs found

    Revisiting Risk Governance of GM Plants: The Need to Consider New and Emerging Gene-Editing Techniques

    Get PDF
    New and emerging gene-editing techniques make it possible to target specific genes in species with greater speed and specificity than previously possible. Of major relevance for plant breeding, regulators and scientists are discussing how to regulate products developed using these gene-editing techniques. Such discussions include whether to adopt or adapt the current framework for GMO risk governance in evaluating the impacts of gene-edited plants, and derived products, on the environment, human and animal health and society. Product classification or definition is one of several aspects of the current framework being criticized. Further, knowledge gaps related to risk assessments of gene-edited organisms—for example of target and off-target effects of intervention in plant genomes—are also of concern. Resolving these and related aspects of the current framework will involve addressing many subjective, value-laden positions, for example how to specify protection goals through ecosystem service approaches. A process informed by responsible research and innovation practices, involving a broader community of people, organizations, experts, and interest groups, could help scientists, regulators, and other stakeholders address these complex, value-laden concerns related to gene-editing of plants with and for society

    An integrated multi-omics analysis of the NK603 Roundup-tolerant GM maize reveals metabolism disturbances caused by the transformation process

    Get PDF
    Glyphosate tolerant genetically modified (GM) maize NK603 was assessed as ‘substantially equivalent’ to its isogenic counterpart by a nutrient composition analysis in order to be granted market approval. We have applied contemporary in depth molecular profiling methods of NK603 maize kernels (sprayed or unsprayed with Roundup) and the isogenic corn to reassess its substantial equivalence status. Proteome profiles of the maize kernels revealed alterations in the levels of enzymes of glycolysis and TCA cycle pathways, which were reflective of an imbalance in energy metabolism. Changes in proteins and metabolites of glutathione metabolism were indicative of increased oxidative stress. The most pronounced metabolome differences between NK603 and its isogenic counterpart consisted of an increase in polyamines including N-acetyl-cadaverine (2.9-fold), N-acetylputrescine (1.8-fold), putrescine (2.7-fold) and cadaverine (28-fold), which depending on context can be either protective or a cause of toxicity. Our molecular profiling results show that NK603 and its isogenic control are not substantially equivalent

    Proteomic Profile of Glyphosate-Resistant Soybean under Combined Herbicide and Drought Stress Conditions

    Get PDF
    While some genetically modified (GM) plants have been targeted to confer tolerance to abiotic stressors, transgenes are impacted by abiotic stressors, causing adverse effects on plant physiology and yield. However, routine safety analyses do not assess the response of GM plants under different environmental stress conditions. In the context of climate change, the combination of abiotic stressors is a reality in agroecosystems. Therefore, the aim of this study was to analyze the metabolic cost by assessing the proteomic profiles of GM soybean varieties under glyphosate spraying and water deficit conditions compared to their non-transgenic conventional counterparts. We found evidence of cumulative adverse effects that resulted in the reduction of enzymes involved in carbohydrate metabolism, along with the expression of amino acids and nitrogen metabolic enzymes. Ribosomal metabolism was significantly enriched, particularly the protein families associated with ribosomal complexes L5 and L18. The interaction network map showed that the affected module representing the ribosome pathway interacts strongly with other important proteins, such as the chloro-plastic gamma ATP synthase subunit. Combined, these findings provide clear evidence for increasing the metabolic costs of GM soybean plants in response to the accumulation of stress factors. First, alterations in the ribosome pathway indicate that the GM plant itself carries a metabolic burden associated with the biosynthesis of proteins as effects of genetic transformation. GM plants also showed an imbalance in energy demand and production under controlled conditions, which was increased under drought conditions. Identifying the consequences of altered metabolism related to the interaction between plant transgene stress responses allows us to understand the possible effects on the ecology and evolution of plants in the medium and long term and the potential interactions with other organisms when these organisms are released in the environment

    Proteomic Profile of Glyphosate-Resistant Soybean under Combined Herbicide and Drought Stress Conditions

    No full text
    While some genetically modified (GM) plants have been targeted to confer tolerance to abiotic stressors, transgenes are impacted by abiotic stressors, causing adverse effects on plant physiology and yield. However, routine safety analyses do not assess the response of GM plants under different environmental stress conditions. In the context of climate change, the combination of abiotic stressors is a reality in agroecosystems. Therefore, the aim of this study was to analyze the metabolic cost by assessing the proteomic profiles of GM soybean varieties under glyphosate spraying and water deficit conditions compared to their non-transgenic conventional counterparts. We found evidence of cumulative adverse effects that resulted in the reduction of enzymes involved in carbohydrate metabolism, along with the expression of amino acids and nitrogen metabolic enzymes. Ribosomal metabolism was significantly enriched, particularly the protein families associated with ribosomal complexes L5 and L18. The interaction network map showed that the affected module representing the ribosome pathway interacts strongly with other important proteins, such as the chloro-plastic gamma ATP synthase subunit. Combined, these findings provide clear evidence for increasing the metabolic costs of GM soybean plants in response to the accumulation of stress factors. First, alterations in the ribosome pathway indicate that the GM plant itself carries a metabolic burden associated with the biosynthesis of proteins as effects of genetic transformation. GM plants also showed an imbalance in energy demand and production under controlled conditions, which was increased under drought conditions. Identifying the consequences of altered metabolism related to the interaction between plant transgene stress responses allows us to understand the possible effects on the ecology and evolution of plants in the medium and long term and the potential interactions with other organisms when these organisms are released in the environment

    Challenges for transgene detection in landraces and wild relatives: learning from 15 years of debate over GM maize in Mexico

    Get PDF
    Maize is one of the world’s five staple cereals and its traditional varieties constitute a global resource critical to future agricultural development. Fifteen years ago, claims that transgenes had spread into traditional landrace maize in Mexico started an international discussion on the scale and significance of transgene flow from genetically modified (GM) crops to centres of crop origin and genetic diversity. The initial discovery of transgenes in landrace maize sparked an intense environmental dispute in which the culture and traditions of indigenous people were seen as threatened by the unchecked spread of biotechnological inventions from multinational corporations. This dispute was reflected in a political and legal battle over the regulatory status of GM crops in Mexico, which continues today as approvals of GM maize for cultivation remain subject to contestation in the courts. These legal, political and environmental disputes have been fanned by the existence of a significant scientific controversy over the methods for GM detection. The use of various approaches and a lack of harmonized methods specific for monitoring and detection of transgenes in landraces has generated both positive and negative results for GM contamination in Mexico over the years. In this paper, we review the peer-reviewed literature on transgene detection in Mexican maize and highlight the challenges associated with transgene detection in landraces. In doing so, we identify the key methodological aspects under dispute and pinpoint the research bottlenecks and needs for building the capacity to effectively monitor transgene escape from GM crops to wild relatives or landraces.publishedVersio
    corecore