12 research outputs found

    Editorial: Advances in anti-malarial drug discovery

    Get PDF

    Triclosan inhibit the growth of the late liver-stage of Plasmodium

    No full text
    Annually, approximately two million human deaths are caused worldwide by malaria, most of them being children. Plasmodium falciparum is the leading cause of cerebral malaria, the most severe and fatal form of disease. Moreover, the emergence of resistant strains to the existing drugs has worsened the situation. Currently, primaquine is the only drug available for eliminating liver-stage parasites. Because of the emergence of resistant parasite strains, it becomes necessary to find new targets unique to the malaria parasites. In the Plasmodium species, the discovery of a distinct Type-II fatty-acid synthesis pathway has created an opportunity to target this pathway for the development of new inhibitors of malaria parasite growth. The present study explored the growth inhibition potential of triclosan in the case of liver-stage parasites. Liver-stage of Plasmodium is an excellent target for intervention due to very small parasite load as well as possibility of eliminating parasites before it can cause blood-stage infection. Here we report that triclosan inhibits the development of the Plasmodium liver-stage parasites

    Multistage antiplasmodial activity of hydroxyethylamine compounds,in vitroandin vivoevaluations

    No full text
    Malaria, a global threat to the human population, remains a challenge partly due to the fast-growing drug-resistant strains of Plasmodium species. New therapeutics acting against the pathogenic asexual and sexual stages, including liver-stage malarial infection, have now attained more attention in achieving malaria eradication efforts. In this paper, two previously identified potent antiplasmodial hydroxyethylamine (HEA) compounds were investigated for their activity against the malaria parasite's multiple life stages

    Liver-Stage Specific Response among Endemic Populations: Diet and Immunity

    Get PDF
    Developing effective anti-malarial vaccine has been a challenge for long. Various factors including complex life cycle of parasite and lack of knowledge of stage specific critical antigens are some of the reasons. Moreover, inadequate understanding of the immune responses vis-à-vis sterile protection induced naturally by Plasmodia infection has further compounded the problem. It has been shown that people living in endemic areas take years to develop protective immunity to blood stage infection. But hardly anyone believes that immunity to liver-stage infection could be developed. Various experimental model studies using attenuated parasite suggest that liver stage immunity might exist among endemic populations. This could be induced because of the attenuation of parasite in liver by various compounds present in the diet of endemic populations

    Lipophilic Bisphosphonates Are Potent Inhibitors of Plasmodium Liver-Stage Growth▿ †

    No full text
    Nitrogen-containing bisphosphonates, drugs used to treat bone resorption diseases, also have activity against a broad range of protists, including blood-stage Plasmodium spp. Here, we show that new-generation “lipophilic” bisphosphonates designed as anticancer agents that block protein prenylation also have potent activity against Plasmodium liver stages, with a high (>100) therapeutic index. Treatment of mice with the bisphosphonate BPH-715 and challenge with Plasmodium berghei sporozoites revealed complete protection (no blood-stage parasites after 28 days). There was also activity against blood-stage forms in vitro and a 4-day delay in the prepatent period in vivo. The lipophilic bisphosphonates have activity against a Plasmodium geranylgeranyl diphosphate synthase (GGPPS), as well as low nM activity against human farnesyl and geranylgeranyl diphosphate synthases. The most active inhibitor in vitro and in vivo had enzyme inhibitory activity similar to that of the other, less active compounds but was more lipophilic. Lipophilic bisphosphonates are thus promising leads for novel antimalarials that target liver-stage infection

    Plasmodium Circumsporozoite Protein Promotes the Development of the Liver Stages of the Parasite

    Get PDF
    SummaryThe liver stages of malaria are clinically silent but have a central role in the Plasmodium life cycle. Liver stages of the parasite containing thousands of merozoites grow inside hepatocytes for several days without triggering an inflammatory response. We show here that Plasmodium uses a PEXEL/VTS motif to introduce the circumsporozoite (CS) protein into the hepatocyte cytoplasm and a nuclear localization signal (NLS) to enter its nucleus. CS outcompetes NFκB nuclear import, thus downregulating the expression of many genes controlled by NFκB, including those involved in inflammation. CS also influences the expression of over one thousand host genes involved in diverse metabolic processes to create a favorable niche for the parasite growth. The presence of CS in the hepatocyte enhances parasite growth of the liver stages in vitro and in vivo. These findings have far reaching implications for drug and vaccine development against the liver stages of the malaria parasite
    corecore