3 research outputs found

    Current and emerging osteoporosis pharmacotherapy for women: state of the art therapies for preventing bone loss.

    Get PDF
    INTRODUCTION: Pharmacological options to address the imbalance between bone resorption and accrual in osteoporosis include anti-resorptive and osteoanabolic agents. Unique biologic pathways such as the Wnt/β-catenin pathway have been targeted in the quest for new emerging therapeutic strategies. Areas covered: This review provides an overview of existing pharmacotherapy for osteoporosis in women and explore state-of-the-art and emerging therapies to prevent bone loss, with an emphasis on the mechanism of action, indications and side effects. Expert opinion: Bisphosphonates appear to be a reliable and cost-effective option, whereas denosumab has introduced a simpler dosing regimen and may achieve a linear increase in bone mineral density (BMD) with no plateau being observed, along with continuous anti-fracture efficacy. Abaloparatide, a parathyroid-hormone-related peptide (PTHrP)-analogue, approved by the FDA in April 2017, constitutes the first new anabolic osteoporosis drug in the US for nearly 15 years and has also proven its anti-fracture efficacy. Romosozumab, a sclerostin inhibitor, which induces bone formation and suppresses bone resorption, has also been developed and shown a significant reduction in fracture incidence; however, concerns have arisen with regard to increased cardiovascular risk

    <i>ApoA1</i> Deficiency Reshapes the Phenotypic and Molecular Characteristics of Bone Marrow Adipocytes in Mice

    No full text
    In the present study, we studied the effect of apolipoprotein A-1 (APOA1) on the spatial and molecular characteristics of bone marrow adipocytes, using well-characterized ApoA1 knockout mice. APOA1 is a central regulator of high-density lipoprotein cholesterol (HDL-C) metabolism, and thus HDL; our recent work showed that deficiency of APOA1 increases bone marrow adiposity in mice. We found that ApoA1 deficient mice have greatly elevated adipocytes within their bone marrow compared to wild type counterparts. Morphologically, the increased adipocytes were similar to white adipocytes, and displayed proximal tibial-end localization. Marrow adipocytes from wild type mice were significantly fewer and did not display a bone-end distribution pattern. The mRNA levels of the brown/beige adipocyte-specific markers Ucp1, Dio2, Pat2, and Pgc1a; and the expression of leptin were greatly reduced in the ApoA1 knock-out in comparison to the wild-type mice. In the knock-out mice, adiponectin was remarkably elevated. In keeping with the close ties of hematopoietic stem cells and marrow adipocytes, using flow cytometry we found that the elevated adiposity in the ApoA1 knockout mice is associated with a significant reduction in the compartments of hematopoietic stem cells and common myeloid, but not of the common lymphoid, progenitors. Moreover, the ‘beiging’-related marker osteopontin and the angiogenic factor VEGF were also reduced in the ApoA1 knock-out mice, further supporting the notion that APOA1—and most probably HDL-C—regulate bone marrow microenvironment, favoring beige/brown adipocyte characteristics
    corecore