11 research outputs found

    hUC-MSCs-derived MFGE8 ameliorates locomotor dysfunction via inhibition of ITGB3/ NF-ΞΊB signaling in an NMO mouse model

    Get PDF
    Neuromyelitis optica (NMO) is a severe autoimmune inflammatory disease of the central nervous system that affects motor function and causes relapsing disability. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have been used extensively in the treatment of various inflammatory diseases, due to their potent regulatory roles that can mitigate inflammation and repair damaged tissues. However, their use in NMO is currently limited, and the mechanism underlying the beneficial effects of hUC-MSCs on motor function in NMO remains unclear. In this study, we investigate the effects of hUC-MSCs on the recovery of motor function in an NMO systemic model. Our findings demonstrate that milk fat globule epidermal growth 8 (MFGE8), a key functional factor secreted by hUC-MSCs, plays a critical role in ameliorating motor impairments. We also elucidate that the MFGE8/Integrin Ξ±vΞ²3/NF-ΞΊB signaling pathway is partially responsible for structural and functional recovery, in addition to motor functional enhancements induced by hUC-MSC exposure. Taken together, these findings strongly support the involvement of MFGE8 in mediating hUC-MSCs-induced improvements in motor functional recovery in an NMO mouse model. In addition, this provides new insight on the therapeutic potential of hUC-MSCs and the mechanisms underlying their beneficial effects in NMO

    A review of diagnostic and functional imaging in headache

    Get PDF
    The neuroimaging of headache patients has revolutionised our understanding of the pathophysiology of primary headaches and provided unique insights into these syndromes. Modern imaging studies point, together with the clinical picture, towards a central triggering cause. The early functional imaging work using positron emission tomography shed light on the genesis of some syndromes, and has recently been refined, implying that the observed activation in migraine (brainstem) and in several trigeminal-autonomic headaches (hypothalamic grey) is involved in the pain process in either a permissive or triggering manner rather than simply as a response to first-division nociception per se. Using the advanced method of voxel-based morphometry, it has been suggested that there is a correlation between the brain area activated specifically in acute cluster headache β€” the posterior hypothalamic grey matter β€” and an increase in grey matter in the same region. No structural changes have been found for migraine and medication overuse headache, whereas patients with chronic tension-type headache demonstrated a significant grey matter decrease in regions known to be involved in pain processing. Modern neuroimaging thus clearly suggests that most primary headache syndromes are predominantly driven from the brain, activating the trigeminovascular reflex and needing therapeutics that act on both sides: centrally and peripherally

    A PET study exploring the laterality of brainstem activation in migraine using glyceryl trinitrate

    No full text
    Migraine is a common disabling condition likely to be associated with dysfunction of brain pathways involved in pain and other sensory modalities. A cardinal, indeed signature, feature of the disorder that led to its name is that the pain may be lateralized. H(2)15O-labelled PET was used to study 24 migraineurs and eight healthy controls. The migraineurs were divided into three groups according to the site of their headache: right, left or bilateral. In each group, a migraine was induced using a glyceryl trinitrate (GTN) infusion. The subjects were scanned at predefined points: pre-infusion, during GTN, during migraine and post-migraine. SPM99 software was used to analyse the data. Significant brainstem activation was seen in the dorsal lateral pons (P &lt; 0.05 after small volume correction) during the migraine state versus the pain-free state when comparing migraineurs with controls. When each group was analysed separately, to investigate laterality, it was found that the dorsal pontine activation was ipsilateral in the right-sided and left-sided groups and bilateral in the bilateral headache group with a left-sided preponderance. Consistent with previous work, the activation persisted after pain was controlled by sumatriptan. These results suggest that lateralization of pain in migraine is due to lateralized brain dysfunction.<br/

    Inhibition of complement C3 signaling ameliorates locomotor and visual dysfunction in autoimmune inflammatory diseases

    No full text
    Neuromyelitis optica (NMO) is an autoimmune inflammatory disease of the central nervous system (CNS) characterized by transverse myelitis and optic neuritis. The pathogenic serum IgG antibody against the aquaporin-4 (AQP4) on astrocytes triggers the activation of the complement cascade, causing astrocyte injury, followed by oligodendrocyte injury, demyelination, and neuronal loss. Complement C3 is positioned as a central player that relays upstream initiation signals to activate downstream effectors, potentially stimulating and amplifying host immune and inflammatory responses. However, whether targeting the inhibition of C3 signaling could ameliorate tissue injury, locomotor defects, and visual impairments in NMO remains to be investigated. In this study, using the targeted C3 inhibitor CR2-Crry led to a significant decrease in complement deposition and demyelination in both slice cultures and focal intracerebral injection models. Moreover, the treatment downregulated the expression of inflammatory cytokines and improved motor dysfunction in a systemic NMO mouse model. Similarly, employing serotype 2/9 adeno-associated virus (AAV2/9) to induce permanent expression of CR2-Crry resulted in a reduction in visual dysfunction by attenuating NMO-like lesions. Our findings reveal the therapeutic value of inhibiting the complement C3 signaling pathway in NMO
    corecore