72 research outputs found

    Application of bioelectrical impedance analysis in prediction of light kid carcass and muscle chemical composition

    Get PDF
    Carcass data were collected from 24 kids (average live weight of 12.5±5.5 kg; range 4.5 to 22.4 kg) of Jarmelista Portuguese native breed, to evaluate bioelectrical impedance analysis (BIA) as a technique for prediction of light kid carcass and muscle chemical composition. Resistance (Rs, Ω) and reactance (Xc, Ω), were measured in the cold carcasses with a single frequency bioelectrical impedance analyzer and, together with impedance (Z, Ω), two electrical volume measurements (VolA and VolB, cm2/Ω), carcass cold weight (CCW), carcass compactness and several carcass linear measurements were fitted as independent variables to predict carcass composition by stepwise regression analysis. The amount of variation explained by VolA and VolB only reached a significant level (P<0.01 and P<0.05, respectively) for muscle weight, moisture, protein and fat-free soft tissue content, even so with low accuracy, with VolA providing the best results (0.326⩽R 2⩽0.366). Quite differently, individual BIA parameters (Rs, Xc and Z) explained a very large amount of variation in dissectible carcass fat weight (0.814⩽R 2⩽0.862; P<0.01). These individual BIA parameters also explained a large amount of variation in subcutaneous and intermuscular fat weights (respectively 0.749⩽R 2⩽0.793 and 0.718⩽R 2⩽0.760; P<0.01), and in muscle chemical fat weight (0.663⩽R 2⩽0.684; P<0.01). Still significant but much lower was the variation in muscle, moisture, protein and fat-free soft tissue weights (0.344⩽R 2⩽0.393; P<0.01) explained by BIA parameters. Still, the best models for estimation of muscle, moisture, protein and fat-free soft tissue weights included Rs in addition to CCW, and accounted for 97.1% to 99.8% (P<0.01) of the variation observed, with CCW by itself accounting for 97.0% to 99.6% (P<0.01) of that variation. Resistance was the only independent variable selected for the best model predicting subcutaneous fat weight. It was also selected for the best models predicting carcass fat weight (combined with carcass length, CL; R 2=0.943; P<0.01) and intermuscular fat weight (combined with CCW; R 2=0.945; P<0.01). The best model predicting muscle chemical fat weight combined CCW and Z, explaining 85.6% (P<0.01) of the variation observed. These results indicate BIA as a useful tool for prediction of light kids' carcass composition.This work was supported by the Portuguese Science and Technology Foundation (FCT) under the Project PEst-OE/AGR/UID/CVT/00772/2013.info:eu-repo/semantics/publishedVersio

    The road to deterministic matrices with the restricted isometry property

    Get PDF
    The restricted isometry property (RIP) is a well-known matrix condition that provides state-of-the-art reconstruction guarantees for compressed sensing. While random matrices are known to satisfy this property with high probability, deterministic constructions have found less success. In this paper, we consider various techniques for demonstrating RIP deterministically, some popular and some novel, and we evaluate their performance. In evaluating some techniques, we apply random matrix theory and inadvertently find a simple alternative proof that certain random matrices are RIP. Later, we propose a particular class of matrices as candidates for being RIP, namely, equiangular tight frames (ETFs). Using the known correspondence between real ETFs and strongly regular graphs, we investigate certain combinatorial implications of a real ETF being RIP. Specifically, we give probabilistic intuition for a new bound on the clique number of Paley graphs of prime order, and we conjecture that the corresponding ETFs are RIP in a manner similar to random matrices.Comment: 24 page

    Electro-osmotic flow of couple stress fluids in a microchannel propagated by peristalsis

    Get PDF
    A mathematical model is developed for electro-osmotic peristaltic pumping of a non-Newtonian liquid in a deformable micro-channel. Stokes’ couple stress fluid model is deployed to represent realistic working liquids. The Poisson-Boltzmann equation for electric potential distribution is implemented owing to the presence of an electrical double layer (EDL) in the micro-channel. Using long wavelength, lubrication theory and Debye-Huckel approximations, the linearized transformed dimensionless boundary value problem is solved analytically. The influence of electro-osmotic parameter (inversely proportional to Debye length), maximum electro-osmotic velocity (a function of external applied electrical field) and couple stress parameter on axial velocity, volumetric flow rate, pressure gradient, local wall shear stress and stream function distributions is evaluated in detail with the aid of graphs. The Newtonian fluid case is retrieved as a special case with vanishing couple stress effects. With increasing couple stress parameter there is a significant elevation in axial pressure gradient whereas the core axial velocity is reduced. An increase in electro-osmotic parameter induces both flow acceleration in the core region (around the channel centreline) and also enhances axial pressure gradient substantially. The study is relevant to simulation of novel smart bio-inspired space pumps, chromatography and medical microscale devices

    First-order formalism for dark energy and dust

    Full text link
    This work deals with first-order formalism for dark energy and dust in standard cosmology, for models described by real scalar field in the presence of dust in spatially flat space. The field dynamics may be standard or tachyonic, and we show how the equations of motion can be solved by first-order differential equations. We investigate a model to illustrate how the dustlike matter may affect the cosmic evolution using this framework.Comment: 5 pages, 1 figure; title changed, new author included, discussions extended, references added, version to appear in EPJ

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements
    • …
    corecore