5,513 research outputs found
The radio spectra of reddened 2MASS QSOs: evidence for young radio jets
Multifrequency radio continuum observations (1.4-22 GHz) of a sample of
reddened QSOs are presented. We find a high incidence (13/16) of radio spectral
properties, such as low frequency turnovers, high frequency spectral breaks or
steep power-law slopes, similar to those observed in powerful compact steep
spectrum (CSS) and gigahertz-peaked spectrum (GPS) sources. The radio data are
consistent with relatively young radio jets with synchotron ages <1e6-1e7yr.
This calculation is limited by the lack of high resolution (milli-arcsec) radio
observations. For the one source in the sample that such data are available a
much younger radio age is determined, <2e3yr, similar to those of GPS/CSS
sources. These findings are consistent with claims that reddened QSOs are young
systems captured at the first stages of the growth of their supermassive black
holes. It also suggests that expanding radio lobes may be an important feedback
mode at the early stages of the evolution of AGN.Comment: 9 pages, to appear in MNRA
Large-Eddy Simulation closures of passive scalar turbulence: a systematic approach
The issue of the parameterization of small scale (``subgrid'') turbulence is
addressed in the context of passive scalar transport. We focus on the Kraichnan
advection model which lends itself to the analytical investigation of the
closure problem. We derive systematically the dynamical equations which rule
the evolution of the coarse-grained scalar field. At the lowest-order
approximation in , being the characteristic scale of the filter
defining the coarse-grained scalar field and the inertial range separation,
we recover the classical eddy-diffusivity parameterization of small scales. At
the next-leading order a dynamical closure is obtained. The latter outperforms
the classical model and is therefore a natural candidate for subgrid modelling
of scalar transport in generic turbulent flows.Comment: 10 LaTex pages, 1 PS figure. Changes: comments added below previous
(3.10); Previous (3.16) has been corrected; Minor changes in the conclusion
Scene-adapted plug-and-play algorithm with convergence guarantees
Recent frameworks, such as the so-called plug-and-play, allow us to leverage
the developments in image denoising to tackle other, and more involved,
problems in image processing. As the name suggests, state-of-the-art denoisers
are plugged into an iterative algorithm that alternates between a denoising
step and the inversion of the observation operator. While these tools offer
flexibility, the convergence of the resulting algorithm may be difficult to
analyse. In this paper, we plug a state-of-the-art denoiser, based on a
Gaussian mixture model, in the iterations of an alternating direction method of
multipliers and prove the algorithm is guaranteed to converge. Moreover, we
build upon the concept of scene-adapted priors where we learn a model targeted
to a specific scene being imaged, and apply the proposed method to address the
hyperspectral sharpening problem
The Phoenix Deep Survey: The 1.4 GHz microJansky catalogue
The initial Phoenix Deep Survey (PDS) observations with the Australia
Telescope Compact Array have been supplemented by additional 1.4 GHz
observations over the past few years. Here we present details of the
construction of a new mosaic image covering an area of 4.56 square degrees, an
investigation of the reliability of the source measurements, and the 1.4 GHz
source counts for the compiled radio catalogue. The mosaic achieves a 1-sigma
rms noise of 12 microJy at its most sensitive, and a homogeneous radio-selected
catalogue of over 2000 sources reaching flux densities as faint as 60 microJy
has been compiled. The source parameter measurements are found to be consistent
with the expected uncertainties from the image noise levels and the Gaussian
source fitting procedure. A radio-selected sample avoids the complications of
obscuration associated with optically-selected samples, and by utilising
complementary PDS observations including multicolour optical, near-infrared and
spectroscopic data, this radio catalogue will be used in a detailed
investigation of the evolution in star-formation spanning the redshift range 0
< z < 1. The homogeneity of the catalogue ensures a consistent picture of
galaxy evolution can be developed over the full cosmologically significant
redshift range of interest. The 1.4 GHz mosaic image and the source catalogue
are available on the web at http://www.atnf.csiro.au/~ahopkins/phoenix/ or from
the authors by request.Comment: 16 pages, 11 figures, 4 tables. Accepted for publication by A
Astrometric Resolution of Severely Degenerate Binary Microlensing Events
We investigate whether the "close/wide" class of degeneracies in
caustic-crossing binary microlensing events can be broken astrometrically.
Dominik showed that these degeneracies are particularly severe because they
arise from a degeneracy in the lens equation itself rather than a mere
"accidental" mimicking of one light curve by another. A massive observing
campaign of five microlensing collaborations was unable to break this
degeneracy photometrically in the case of the binary lensing event MACHO
98-SMC-1. We show that this degeneracy indeed causes the image centroids of the
wide and close solutions to follow an extremely similar pattern of motion
during the time when the source is in or near the caustic. Nevertheless, the
two image centroids are displaced from one another and this displacement is
detectable by observing the event at late times. Photometric degeneracies
therefore can be resolved astrometrically, even for these most severe cases.Comment: 11 pages, including 4 figures. Submitted to Ap
Fast Image Recovery Using Variable Splitting and Constrained Optimization
We propose a new fast algorithm for solving one of the standard formulations
of image restoration and reconstruction which consists of an unconstrained
optimization problem where the objective includes an data-fidelity
term and a non-smooth regularizer. This formulation allows both wavelet-based
(with orthogonal or frame-based representations) regularization or
total-variation regularization. Our approach is based on a variable splitting
to obtain an equivalent constrained optimization formulation, which is then
addressed with an augmented Lagrangian method. The proposed algorithm is an
instance of the so-called "alternating direction method of multipliers", for
which convergence has been proved. Experiments on a set of image restoration
and reconstruction benchmark problems show that the proposed algorithm is
faster than the current state of the art methods.Comment: Submitted; 11 pages, 7 figures, 6 table
Starburst and AGN activity in ultraluminous infrared galaxies
(Abridged) We examine the power source of 41 local Ultraluminous Infrared
Galaxies using archival infrared and optical photometry. We fit the observed
Spectral Energy Distributions (SEDs) with starburst and AGN components; each
component being drawn from a family of templates. We find all of the sample
require a starburst, whereas only half require an AGN. In 90% of the sample the
starburst provides over half the IR emission, with a mean fractional luminosity
of 82%. When combined with other galaxy samples we find that starburst and AGN
luminosities correlate over 6 decades in IR luminosity suggesting that a common
factor governs both luminosities, plausibly the gas masses in the nuclear
regions. We find that the mid-IR 7.7 micron line-continuum ratio is no
indication of the starburst luminosity, or the fractional AGN luminosity, and
therefore that this ratio is not a reliable diagnostic of the power source in
ULIRGs. We propose that the scatter in the radio-IR correlation in ULIRGs is
due to a skewed starburst IMF and/or relic relativistic electrons from a
previous starburst, rather than contamination from an obscured AGN. We show
that most ULIRGs undergo multiple starbursts during their lifetime, and by
inference that mergers between more than two galaxies may be common amongst
ULIRGs. Our results support the evolutionary model for ULIRGs proposed by
Farrah et al 2001, where they can follow many different evolutionary paths of
starburst and AGN activity in transforming merging spiral galaxies into
elliptical galaxies, but that most do not go through an optical QSO phase. The
lower level of AGN activity in our local sample than in z~1 HLIRGs implies that
the two samples are distinct populations. We postulate that different galaxy
formation processes at high-z are responsible for this difference.Comment: 24 pages, 8 figures. Accepted for publication in MNRA
An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems
We propose a new fast algorithm for solving one of the standard approaches to
ill-posed linear inverse problems (IPLIP), where a (possibly non-smooth)
regularizer is minimized under the constraint that the solution explains the
observations sufficiently well. Although the regularizer and constraint are
usually convex, several particular features of these problems (huge
dimensionality, non-smoothness) preclude the use of off-the-shelf optimization
tools and have stimulated a considerable amount of research. In this paper, we
propose a new efficient algorithm to handle one class of constrained problems
(often known as basis pursuit denoising) tailored to image recovery
applications. The proposed algorithm, which belongs to the family of augmented
Lagrangian methods, can be used to deal with a variety of imaging IPLIP,
including deconvolution and reconstruction from compressive observations (such
as MRI), using either total-variation or wavelet-based (or, more generally,
frame-based) regularization. The proposed algorithm is an instance of the
so-called "alternating direction method of multipliers", for which convergence
sufficient conditions are known; we show that these conditions are satisfied by
the proposed algorithm. Experiments on a set of image restoration and
reconstruction benchmark problems show that the proposed algorithm is a strong
contender for the state-of-the-art.Comment: 13 pages, 8 figure, 8 tables. Submitted to the IEEE Transactions on
Image Processin
- …