5 research outputs found

    Dynamics of mitochondrial heteroplasmy in three families investigated via a repeatable re-sequencing study

    Get PDF
    Background: Originally believed to be a rare phenomenon, heteroplasmy - the presence of more than one mitochondrial DNA (mtDNA) variant within a cell, tissue, or individual - is emerging as an important component of eukaryotic genetic diversity. Heteroplasmies can be used as genetic markers in applications ranging from forensics to cancer diagnostics. Yet the frequency of heteroplasmic alleles may vary from generation to generation due to the bottleneck occurring during oogenesis. Therefore, to understand the alterations in allele frequencies at heteroplasmic sites, it is of critical importance to investigate the dynamics of maternal mtDNA transmission. Results: Here we sequenced, at high coverage, mtDNA from blood and buccal tissues of nine individuals from three families with a total of six maternal transmission events. Using simulations and re-sequencing of clonal DNA, we devised a set of criteria for detecting polymorphic sites in heterogeneous genetic samples that is resistant to the noise originating from massively parallel sequencing technologies. Application of these criteria to nine human mtDNA samples revealed four heteroplasmic sites. Conclusions: Our results suggest that the incidence of heteroplasmy may be lower than estimated in some other recent re-sequencing studies, and that mtDNA allelic frequencies differ significantly both between tissues of the same individual and between a mother and her offspring. We designed our study in such a way that the complete analysis described here can be repeated by anyone either at our site or directly on the Amazon Cloud. Our computational pipeline can be easily modified to accommodate other applications, such as viral re-sequencing

    The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update

    Get PDF
    Galaxy (homepage: https://galaxyproject.org, main public server: https://usegalaxy.org) is a web-based scientific analysis platform used by tens of thousands of scientists across the world to analyze large biomedical datasets such as those found in genomics, proteomics, metabolomics and imaging. Started in 2005, Galaxy continues to focus on three key challenges of data-driven biomedical science: making analyses accessible to all researchers, ensuring analyses are completely reproducible, and making it simple to communicate analyses so that they can be reused and extended. During the last two years, the Galaxy team and the open-source community around Galaxy have made substantial improvements to Galaxy's core framework, user interface, tools, and training materials. Framework and user interface improvements now enable Galaxy to be used for analyzing tens of thousands of datasets, and >5500 tools are now available from the Galaxy ToolShed. The Galaxy community has led an effort to create numerous high-quality tutorials focused on common types of genomic analyses. The Galaxy developer and user communities continue to grow and be integral to Galaxy's development. The number of Galaxy public servers, developers contributing to the Galaxy framework and its tools, and users of the main Galaxy server have all increased substantially

    Developing reproducible bioinformatics analysis workflows for heterogeneous computing environments to support African genomics

    Get PDF
    Background: The Pan-African bioinformatics network, H3ABioNet, comprises 27 research institutions in 17 African countries. H3ABioNet is part of the Human Health and Heredity in Africa program (H3Africa), an African-led research consortium funded by the US National Institutes of Health and the UK Wellcome Trust, aimed at using genomics to study and improve the health of Africans. A key role of H3ABioNet is to support H3Africa projects by building bioinformatics infrastructure such as portable and reproducible bioinformatics workflows for use on heterogeneous African computing environments. Processing and analysis of genomic data is an example of a big data application requiring complex interdependent data analysis workflows. Such bioinformatics workflows take the primary and secondary input data through several computationally-intensive processing steps using different software packages, where some of the outputs form inputs for other steps. Implementing scalable, reproducible, portable and easy-to-use workflows is particularly challenging. Results: H3ABioNet has built four workflows to support (1) the calling of variants from high-throughput sequencing data; (2) the analysis of microbial populations from 16S rDNA sequence data; (3) genotyping and genome-wide association studies; and (4) single nucleotide polymorphism imputation. A week-long hackathon was organized in August 2016 with participants from six African bioinformatics groups, and US and European collaborators. Two of the workflows are built using the Common Workflow Language framework (CWL) and two using Nextflow. All the workflows are containerized for improved portability and reproducibility using Docker, and are publicly available for use by members of the H3Africa consortium and the international research community. Conclusion: The H3ABioNet workflows have been implemented in view of offering ease of use for the end user and high levels of reproducibility and portability, all while following modern state of the art bioinformatics data processing protocols. The H3ABioNet workflows will service the H3Africa consortium projects and are currently in use. All four workflows are also publicly available for research scientists worldwide to use and adapt for their respective needs. The H3ABioNet workflows will help develop bioinformatics capacity and assist genomics research within Africa and serve to increase the scientific output of H3Africa and its Pan-African Bioinformatics Network
    corecore