7 research outputs found

    Frictionally excited thermoelastic instability in the presence of contact resistance

    No full text
    In sliding systems, frictional heating generates a well-known instability above a certain critical speed Vcr, which is a function of geometrical and material properties only. Similar instabilities are known to occur in the static problem, driven by temperature differences, in the presence of thermal contact resistance. Thermal contact resistance at the interface has seldom been considered and gives rise to full coupling of the problem. Generally, the resistance decreases non-linearly when pressure is increased. Here, the critical condition (in terms of heat flux and sliding speed) for the stability of the uniform pressure solution for a half-plane in frictional contact with a rigid wall at fixed temperature is studied for a general resistance function R(p). It is found that the heat flux direction increases the instability as in the case of zero speed, i.e. when directed into the half-plane (which is the only distortive material), whereas frictional heating can have also a stabilizing effect, for a given heat flux, specifically when R(p) + pRprime(p) < 0. Also, an isothermal critical speed has been defined, and the actual critical speed is found to be smaller or larger depending on the temperature difference sign. Longer wavelengths are always more unstable so that the critical wavelength is still dictated by the real size of the system

    A re-examination of rolling contact fatigue experiments by Clayton and Su with suggestions for surface durability calculations

    No full text
    A re-interpretation of recent RCF experiments by Clayton and Su (C&S) [Wear 200 (1996) 63] under water lubricated rolling/sliding conditions, with careful measurements of ratchetting strains, and their comparisons with experimentally observed lives, seems to confirm the validity of ratchetting failure (RF) mechanism and Kapoor’s "critical ratchet strain" as a material property. However, the complexity of modelling the ratchetting phenomenon and the uncertainties on the material’s critical ratchet strain, suggests that perhaps a more realistic alternative is the use of empirical Wöhler-like life curves similarly to currently used for the contact fatigue evaluation in gears design and standards. In particular, it is found that the "pitting" fatigue limit at 107 cycles suggested by the gears standard is reasonably accurate also for the C&S experiments on various typical rail steels. Since the gears life factor suggested for gears turns out quite conservative at shorter lives, it seems a single new life factor could be suggested, at least for all pearlitic and bainitic steels tested by C&S under water lubrication

    Instability of thermoelastic contact for two half-planes sliding out-of-plane with contact resistance and frictional heating

    No full text
    Thermoelastic contact is known to show instabilities when the heat transmitted across the interface depends on the pressure, either because of a pressure-dependent thermal contact resistance R(p) or because of frictional heating due to the product of friction coefficient, speed, and pressure, fVp. Recently, the combined effect of pressure-dependent thermal contact resistance and frictional heating has been studied in the context of simple rod models or for a more realistic elastic conducting half-plane sliding against a rigid perfect conductor "wall". Because R(p) introduces a non-linearity even in full contact, the "critical speed" for the uniform pressure solution to be unstable depends not just on material properties, and geometry, but also on the heat flux and on pressure.Here, the case of two different elastic and conducting half-planes is studied, and frictional heating is shown to produce significant effects on the stability boundaries with respect to the Zhang and Barber (J. Appl. Mech. 57 (1990) 365) corresponding case with no sliding. In particular, frictional heating makes instability possible for a larger range of prescribed temperature drop at the interface including, at sufficiently high speeds, the region of opposite sign of that giving instability in the corresponding static case. The effect of frictional heating is particularly relevant for one material combinations of the Zhang and Barber (J. Appl. Mech. 57 (1990) 365) classification (denominated class b here), as above a certain critical speed, the system is unstable regardless of temperature drop at the interface.Finally, if the system has a prescribed heat flow into one of the materials, the results are similar, except that frictional heating may also become a stabilizing effect, if the resistance function and the material properties satisfy a certain condition

    The thermoelastic Aldo contact model with frictional heating

    No full text
    In the study of the essential features of thermoelastic contact, Comninou and Dundurs (J. Therm. Stresses 3 (1980) 427) devised a simplified model, the so-called "Aldo model", where the full 3D body is replaced by a large number of thin rods normal to the interface and insulated between each other, and the system was further reduced to 2 rods by Barber's Conjecture (ASME J. Appl. Mech. 48 (1981) 555). They studied in particular the case of heat flux at the interface driven by temperature differences of the bodies, and opposed by a contact resistance, finding possible multiple and history dependent solutions, depending on the imposed temperature differences.The Aldo model is here extended to include the presence of frictional heating. It is found that the number of solutions of the problem is still always odd, and Barber's graphical construction and the stability analysis of the previous case with no frictional heating can be extended. For any given imposed temperature difference, a critical speed is found for which the uniform pressure solution becomes non-unique and/or unstable. For one direction of the temperature difference, the uniform pressure solution is non-unique before it becomes unstable. When multiple solutions occur, outermost solutions (those involving only one rod in contact) are always stable.A full numerical analysis has been performed to explore the transient behaviour of the system, in the case of two rods of different size. In the general case of N rods, Barber's conjecture is shown to hold since there can only be two stable states for all the rods, and the reduction to two rods is always possible, a posteriori

    Annular dilatation and loss of sino-tubular junction in aneurysmatic aorta: Implications on leaflet quality at the time of surgery. A finite element study

    Get PDF
    OBJECTIVES In the belief that stress is the main determinant of leaflet quality deterioration, we sought to evaluate the effect of annular and/or sino-tubular junction dilatation on leaflet stress. A finite element computer-assisted stress analysis was used to model four different anatomic conditions and analyse the consequent stress pattern on the aortic valve. \ud \ud METHODS Theoretical models of four aortic root configurations (normal, with dilated annulus, with loss of sino-tubular junction and with both dilatation simultaneously) were created with computer-aided design technique. The pattern of stress and strain was then analysed by means of finite elements analysis, when a uniform pressure of 100 mmHg was applied to the model. Analysis produced von Mises charts (colour-coded, computational, three-dimensional stress-pattern graphics) and bidimensional plots of compared stress on arc-linear line, which allowed direct comparison of stress in the four different conditions. \ud \ud RESULTS Stresses both on the free margin and on the ‘belly’ of the leaflet rose from 0.28 MPa (normal conditions) to 0.32 MPa (+14%) in case of isolated dilatation of the sino-tubular junction, while increased to 0.42 MPa (+67%) in case of isolated annular dilatation, with no substantial difference whether sino-tubular junction dilatation was present or not. \ud \ud CONCLUSIONS Annular dilatation is the key element determining an increased stress on aortic leaflets independently from an associated sino-tubular junction dilatation. The presence of annular dilatation associated with root aneurysm greatly decreases the chance of performing a valve sparing procedure without the need for additional manoeuvres on leaflet tissue. This information may lead to a refinement in the optimal surgical strategy

    Tree frog attachment: Mechanisms, challenges, and perspectives

    No full text
    Tree frogs have the remarkable ability to attach to smooth, rough, dry, and wet surfaces using their versatile toe pads. Tree frog attachment involves the secretion of mucus into the pad-substrate gap, requiring adaptations towards mucus drainage and pad lubrication. Here, we present an overview of tree frog attachment, with focus on (i) the morphology and material of the toe pad; (ii) the functional demands on the toe pad arising from ecology, lifestyle, and phylogenetics; (iii) experimental data of attachment performance such as adhesion and friction forces; and (iv) potential perspectives on future developments in the field. By revisiting reported data and observations, we discuss the involved mechanisms of attachment and propose new hypotheses for further research. Among others, we address the following questions: Do capillary and hydrodynamic forces explain the strong friction of the toe pads directly, or indirectly by promoting dry attachment mechanisms? If friction primarily relies on van der Waals (vdW) forces instead, how much do these forces contribute to adhesion in the wet environment tree frogs live in and what role does the mucus play? We show that both pad morphology and measured attachment performance suggest the coaction of several attachment mechanisms (e.g. capillary and hydrodynamic adhesion, mechanical interlocking, and vdW forces) with situation-dependent relative importance. Current analytical models of capillary and hydrodynamic adhesion, caused by the secreted mucus and by environmental liquids, do not capture the contributions of these mechanisms in a comprehensive and accurate way. We argue that the soft pad material and a hierarchical surface pattern on the ventral pad surface enhance the effective contact area and facilitate gap-closure by macro- to nanoscopic drainage of interstitial liquids, which may give rise to a significant contribution of vdW interactions to tree frog attachment. Increasing the comprehension of the complex mechanism of tree frog attachment contributes to a better understanding of other biological attachment systems (e.g. in geckos and insects) and is expected to stimulate the development of a wide array of bioinspired adhesive applications.Related blog Julian K.A. Langowski - 'Kermit’s sticky little fingers: What do we know (and what not) about tree frog attachment?': https://blogs.biomedcentral.com/on-biology/2018/09/06/kermits-sticky-little-fingers-know-not-tree-frog-attachment/Medical Instruments & Bio-Inspired Technolog
    corecore