165 research outputs found

    APACHE II score is better than weaning indices in predicting prolonged mechanical ventilator dependence

    Full text link

    APACHE III outcome prediction in patients admitted to the intensive care unit after liver transplantation: a retrospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Acute Physiology and Chronic Health Evaluation (APACHE) III prognostic system has not been previously validated in patients admitted to the intensive care unit (ICU) after orthotopic liver transplantation (OLT). We hypothesized that APACHE III would perform satisfactorily in patients after OLT</p> <p>Methods</p> <p>A retrospective cohort study was performed. Patients admitted to the ICU after OLT between July 1996 and May 2008 were identified. Data were abstracted from the institutional APACHE III and liver transplantation databases and individual patient medical records. Standardized mortality ratios (with 95% confidence intervals) were calculated by dividing the observed mortality rates by the rates predicted by APACHE III. The area under the receiver operating characteristic curve (AUC) and the Hosmer-Lemeshow C statistic were used to assess, respectively, discrimination and calibration of APACHE III.</p> <p>Results</p> <p>APACHE III data were available for 918 admissions after OLT. Mean (standard deviation [SD]) APACHE III (APIII) and Acute Physiology (APS) scores on the day of transplant were 60.5 (25.8) and 50.8 (23.6), respectively. Mean (SD) predicted ICU and hospital mortality rates were 7.3% (15.4) and 10.6% (18.9), respectively. The observed ICU and hospital mortality rates were 1.1% and 3.4%, respectively. The standardized ICU and hospital mortality ratios with their 95% C.I. were 0.15 (0.07 to 0.27) and 0.32 (0.22 to 0.45), respectively.</p> <p>There were statistically significant differences in APS, APIII, predicted ICU and predicted hospital mortality between survivors and non-survivors. In predicting mortality, the AUC of APACHE III prediction of hospital death was 0.65 (95% CI, 0.62 to 0.68). The Hosmer-Lemeshow C statistic was 5.288 with a p value of 0.871 (10 degrees of freedom).</p> <p>Conclusion</p> <p>APACHE III discriminates poorly between survivors and non-survivors of patients admitted to the ICU after OLT. Though APACHE III has been shown to be valid in heterogenous populations and in certain groups of patients with specific diagnoses, it should be used with caution – if used at all – in recipients of liver transplantation.</p

    Intensive care of the cancer patient: recent achievements and remaining challenges

    Get PDF
    A few decades have passed since intensive care unit (ICU) beds have been available for critically ill patients with cancer. Although the initial reports showed dismal prognosis, recent data suggest that an increased number of patients with solid and hematological malignancies benefit from intensive care support, with dramatically decreased mortality rates. Advances in the management of the underlying malignancies and support of organ dysfunctions have led to survival gains in patients with life-threatening complications from the malignancy itself, as well as infectious and toxic adverse effects related to the oncological treatments. In this review, we will appraise the prognostic factors and discuss the overall perspective related to the management of critically ill patients with cancer. The prognostic significance of certain factors has changed over time. For example, neutropenia or autologous bone marrow transplantation (BMT) have less adverse prognostic implications than two decades ago. Similarly, because hematologists and oncologists select patients for ICU admission based on the characteristics of the malignancy, the underlying malignancy rarely influences short-term survival after ICU admission. Since the recent data do not clearly support the benefit of ICU support to unselected critically ill allogeneic BMT recipients, more outcome research is needed in this subgroup. Because of the overall increased survival that has been reported in critically ill patients with cancer, we outline an easy-to-use and evidence-based ICU admission triage criteria that may help avoid depriving life support to patients with cancer who can benefit. Lastly, we propose a research agenda to address unanswered questions

    Prevalence of systemic inflammatory response syndrome (SIRS) in hospitalized children: a point prevalence study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In accordance with the 1st International pediatric sepsis consensus conference, where sepsis was defined as SIRS associated with suspected or proven infection, we have identified the need to assess the prevalence of SIRS and sepsis in children with abnormal temperatures hospitalized in The Children's Clinical University Hospital in Latvia.</p> <p>Methods</p> <p>A descriptive prospective point prevalence study (using two time periods, each 24 h, randomly chosen) was conducted on all children (n = 943) treated in the hospital. All children with abnormal temperatures – fever or hypothermia (n = 92) – were included in the study. Questionnaires evaluating age-specific SIRS criteria were completed. The prevalence of SIRS was detected with 95% CI.</p> <p>Results</p> <p>Out of a total of 943 patients treated in the hospital, 10% (n = 92) had abnormal temperatures. In all these cases the abnormal temperature was a fever; hypothermia was not established in any patient. Of the children with fever, 72% (n = 66) had SIRS. Of the SIRS patients, 8% (n = 5) developed sepsis, 5% (n = 3) severe sepsis and 2% (n = 1) septic shock. Seventy-six percent (n = 50) of the SIRS patients had fever in combination with respiratory rate >2 SD above normal for age; 50% (n = 33) had fever with abnormal leukocyte count; 15% (n = 10) had fever with tachycardia >2 SD above normal for age. Most of the SIRS patients (39%, n = 25) were aged 2–5 years. Twenty-one percent (n = 14) of the children with SIRS and 50% (n = 2) of those with severe sepsis and septic shock had an underlying disease. In no case was SIRS and sepsis recognized by doctors and the diagnoses were not recorded on the patients' cards.</p> <p>Conclusion</p> <p>Our results would indicate a high risk for sepsis development in children with SIRS. Early SIRS diagnosis and awareness of risk of developing sepsis could change the medical approach to the patient in everyday clinical practice, eventually leading to early, goal-directed therapy for sepsis.</p

    Nicotine replacement therapy for agitation and delirium management in the intensive care unit: a systematic review of the literature.

    Get PDF
    BACKGROUND: Active smokers are prevalent within the intensive care setting and place a significant burden on healthcare systems. Nicotine withdrawal due to forced abstinence on admission may contribute to increased agitation and delirium in this patient group. The aim of this systematic review was to determine whether management of nicotine withdrawal, with nicotine replacement therapy (NRT), reduces agitation and delirium in critically ill patients admitted to the intensive care unit (ICU). METHODS: The following sources were used in this review: MEDLINE, EMBASE, and CINAHL Plus databases. Included studies reported delirium or agitation outcomes in current smokers, where NRT was used as management of nicotine withdrawal, in the intensive care setting. Studies were included regardless of design or number of participants. Data were extracted on ICU classification; study design; population baseline characteristics; allocation and dose of NRT; agitation and delirium assessment methods; and the frequency of agitation, delirium, and psychotropic medication use. RESULTS: Six studies were included. NRT was mostly prescribed for smokers with heavier smoking histories. Three studies reported an association between increased agitation or delirium and NRT use; one study could not find any significant benefit or harm from NRT use; and two described a reduction of symptomatic nicotine withdrawal. A lack of consistent and validated assessment measures, combined with limitations in the quality of reported data, contribute to conflicting results. CONCLUSIONS: Current evidence for the use of NRT in agitation and delirium management in the ICU is inconclusive. An evaluation of risk versus benefit on an individual patient basis should be considered when prescribing NRT. Further studies that consider prognostic balance, adjust for confounders, and employ validated assessment tools are urgently needed
    corecore