5 research outputs found

    ROHHAD syndrome without rapid-onset obesity: A diagnosis challenge

    Full text link
    peer reviewedBackgroundROHHAD syndrome (Rapid-onset Obesity with Hypothalamic dysfunction, Hypoventilation and Autonomic Dysregulation) is rare. Rapid-onset morbid obesity is usually the first recognizable sign of this syndrome, however a subset of patients develop ROHHAD syndrome without obesity. The prevalence of this entity is currently unknown. Alteration of respiratory control as well as dysautonomic disorders often have a fatal outcome, thus early recognition of this syndrome is essential.Material and methodsA retrospective, observational, multicenter study including all cases of ROHHAD without rapid-onset obesity diagnosed in France from 2000 to 2020.ResultsFour patients were identified. Median age at diagnosis was 8 years 10 months. Median body mass index was 17.4 kg/m2. Signs of autonomic dysfunction presented first, followed by hypothalamic disorders. All four patients had sleep apnea syndrome. Hypoventilation led to the diagnosis. Three of the four children received ventilatory support, all four received hormone replacement therapy, and two received psychotropic treatment. One child in our cohort died at 2 years 10 months old. For the three surviving patients, median duration of follow-up was 7.4 years.ConclusionROHHAD syndrome without rapid-onset obesity is a particular entity, appearing later than ROHHAD with obesity. This entity should be considered in the presence of dysautonomia disorders without brain damage. Likewise, the occurrence of a hypothalamic syndrome with no identified etiology requires a sleep study to search for apnea and hypoventilation. The identification of ROHHAD syndrome without rapid-onset obesity is a clinical challenge, with major implications for patient prognosis

    Table_1_ROHHAD syndrome without rapid-onset obesity: A diagnosis challenge.docx

    No full text
    BackgroundROHHAD syndrome (Rapid-onset Obesity with Hypothalamic dysfunction, Hypoventilation and Autonomic Dysregulation) is rare. Rapid-onset morbid obesity is usually the first recognizable sign of this syndrome, however a subset of patients develop ROHHAD syndrome without obesity. The prevalence of this entity is currently unknown. Alteration of respiratory control as well as dysautonomic disorders often have a fatal outcome, thus early recognition of this syndrome is essential.Material and methodsA retrospective, observational, multicenter study including all cases of ROHHAD without rapid-onset obesity diagnosed in France from 2000 to 2020.ResultsFour patients were identified. Median age at diagnosis was 8 years 10 months. Median body mass index was 17.4 kg/m2. Signs of autonomic dysfunction presented first, followed by hypothalamic disorders. All four patients had sleep apnea syndrome. Hypoventilation led to the diagnosis. Three of the four children received ventilatory support, all four received hormone replacement therapy, and two received psychotropic treatment. One child in our cohort died at 2 years 10 months old. For the three surviving patients, median duration of follow-up was 7.4 years.ConclusionROHHAD syndrome without rapid-onset obesity is a particular entity, appearing later than ROHHAD with obesity. This entity should be considered in the presence of dysautonomia disorders without brain damage. Likewise, the occurrence of a hypothalamic syndrome with no identified etiology requires a sleep study to search for apnea and hypoventilation. The identification of ROHHAD syndrome without rapid-onset obesity is a clinical challenge, with major implications for patient prognosis.</p

    Performance of the PEdiatric Logistic Organ Dysfunction-2 score in critically ill children requiring plasma transfusions

    No full text
    BackgroundOrgan dysfunction scores, based on physiological parameters, have been created to describe organ failure. In a general pediatric intensive care unit (PICU) population, the PEdiatric Logistic Organ Dysfunction-2 score (PELOD-2) score had both a good discrimination and calibration, allowing to describe the clinical outcome of critically ill children throughout their stay. This score is increasingly used in clinical trials in specific subpopulation. Our objective was to assess the performance of the PELOD-2 score in a subpopulation of critically ill children requiring plasma transfusions.MethodsThis was an ancillary study of a prospective observational study on plasma transfusions over a 6-week period, in 101 PICUs in 21 countries. All critically ill children who received at least one plasma transfusion during the observation period were included. PELOD-2 scores were measured on days 1, 2, 5, 8, and 12 after plasma transfusion. Performance of the score was assessed by the determination of the discrimination (area under the ROC curve: AUC) and the calibration (Hosmer–Lemeshow test).ResultsFour hundred and forty-three patients were enrolled in the study (median age and weight: 1 year and 9.1 kg, respectively). Observed mortality rate was 26.9 % (119/443). For PELOD-2 on day 1, the AUC was 0.76 (95 % CI 0.71–0.81) and the Hosmer–Lemeshow test was p = 0.76. The serial evaluation of the changes in the daily PELOD-2 scores from day 1 demonstrated a significant association with death, adjusted for the PELOD-2 score on day 1.ConclusionsIn a subpopulation of critically ill children requiring plasma transfusion, the PELOD-2 score has a lower but acceptable discrimination than in an entire population. This score should therefore be used cautiously in this specific subpopulation.</p
    corecore