139 research outputs found

    The Gcn4 transcription factor reduces protein synthesis capacity and extends yeast lifespan

    Get PDF
    In Saccharomyces cerevisiae, deletion of large ribosomal subunit protein-encoding genes increases the replicative lifespan in a Gcn4-dependent manner. However, how Gcn4, a key transcriptional activator of amino acid biosynthesis genes, increases lifespan, is unknown. Here we show that Gcn4 acts as a repressor of protein synthesis. By analyzing the messenger RNA and protein abundance, ribosome occupancy and protein synthesis rate in various yeast strains, we demonstrate that Gcn4 is sufficient to reduce protein synthesis and increase yeast lifespan. Chromatin immunoprecipitation reveals Gcn4 binding not only at genes that are activated, but also at genes, some encoding ribosomal proteins, that are repressed upon Gcn4 overexpression. The promoters of repressed genes contain Rap1 binding motifs. Our data suggest that Gcn4 is a central regulator of protein synthesis under multiple perturbations, including ribosomal protein gene deletions, calorie restriction, and rapamycin treatment, and provide an explanation for its role in longevity and stress response

    Autoregulation of the nonsense-mediated mRNA decay pathway in human cells

    Full text link
    Nonsense-mediated mRNA decay (NMD) is traditionally portrayed as a quality-control mechanism that degrades mRNAs with truncated open reading frames (ORFs). However, it is meanwhile clear that NMD also contributes to the post-transcriptional gene regulation of numerous physiological mRNAs. To identify endogenous NMD substrate mRNAs and analyze the features that render them sensitive to NMD, we performed transcriptome profiling of human cells depleted of the NMD factors UPF1, SMG6, or SMG7. It revealed that mRNAs up-regulated by NMD abrogation had a greater median 3'-UTR length compared with that of the human mRNAome and were also enriched for 3'-UTR introns and uORFs. Intriguingly, most mRNAs coding for NMD factors were among the NMD-sensitive transcripts, implying that the NMD process is autoregulated. These mRNAs all possess long 3' UTRs, and some of them harbor uORFs. Using reporter gene assays, we demonstrated that the long 3' UTRs of UPF1, SMG5, and SMG7 mRNAs are the main NMD-inducing features of these mRNAs, suggesting that long 3' UTRs might be a frequent trigger of NMD

    Elevation gradient of successful plant traits for colonizing alpine summits under climate change

    Get PDF
    Upward migration of plant species due to climate change has become evident in several European mountain ranges. It is still, however, unclear whether certain plant traits increase the probability that a species will colonize mountain summits or vanish, and whether these traits differ with elevation. Here, we used data from a repeat survey of the occurrence of plant species on 120 summits, ranging from 2449 to 3418 m asl, in south-eastern Switzerland to identify plant traits that increase the probability of colonization or extinction in the 20th century. Species numbers increased across all plant traits considered. With some traits, however, numbers increased proportionally more. The most successful colonizers seemed to prefer warmer temperatures and well-developed soils. They produced achene fruits and/or seeds with pappus appendages. Conversely, cushion plants and species with capsule fruits were less efficient as colonizers. Observed changes in traits along the elevation gradient mainly corresponded to the natural distribution of traits. Extinctions did not seem to be clearly related to any trait. Our study showed that plant traits varied along both temporal and elevational gradients. While seeds with pappus seemed to be advantageous for colonization, most of the trait changes also mirrored previous gradients of traits along elevation and hence illustrated the general upward migration of plant species. An understanding of the trait characteristics of colonizing species is crucial for predicting future changes in mountain vegetation under climate change

    New Microsatellite Markers for Campanula scheuchzeri

    No full text

    Adjusting to Shocks in France, Germany and Japan

    No full text
    corecore