2 research outputs found

    MS-READ: Quantitative Measurement of Amino Acid Incorporation

    Get PDF
    Ribosomal protein synthesis results in the genetically programmed incorporation of amino acids into a growing polypeptide chain. Faithful amino acid incorporation that accurately reflects the genetic code is critical to the structure and function of proteins as well as overall proteome integrity. Errors in protein synthesis are generally detrimental to cellular processes yet emerging evidence suggest that proteome diversity generated through mistranslation may be beneficial under certain conditions. Cumulative translational error rates have been determined at the organismal level, however codon specific error rates and the spectrum of misincorporation errors from system to system remain largely unexplored. In particular, until recently technical challenges have limited the ability to detect and quantify comparatively rare amino acid misincorporation events, which occur orders of magnitude less frequently than canonical amino acid incorporation events. We now describe a technique for the quantitative analysis of amino acid incorporation that provides the sensitivity necessary to detect mistranslation events during translation of a single codon at frequencies as low as 1 in 10,000 for all 20 proteinogenic amino acids, as well as non-proteinogenic and modified amino acids. This article is part of a Special Issue entitled Biochemistry of Synthetic Biology - Recent Developments Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O’Donoghue

    Editing of Misaminoacylated tRNA Controls the Sensitivity of Amino Acid Stress Responses in Saccharomyces cerevisiae

    Get PDF
    Amino acid starvation activates the protein kinase Gcn2p, leading to changes in gene expression and translation. Gcn2p is activated by deacylated tRNA, which accumulates when tRNA aminoacylation is limited by lack of substrates or inhibition of synthesis. Pairing of amino acids and deacylated tRNAs is catalyzed by aminoacyl-tRNA synthetases, which use quality control pathways to maintain substrate specificity. Phenylalanyl-tRNA synthetase (PheRS) maintains specificity via an editing pathway that targets non-cognate Tyr-tRNAPhe. While the primary role of aaRS editing is to prevent misaminoacylation, we demonstrate editing of misaminoacylated tRNA is also required for detection of amino acid starvation by Gcn2p. Ablation of PheRS editing caused accumulation of Tyr-tRNAPhe (5%), but not deacylated tRNAPhe during amino acid starvation, limiting Gcn2p kinase activity and suppressing Gcn4p-dependent gene expression. While the PheRS-editing ablated strain grew 50% slower and displayed a 27-fold increase in the rate of mistranslation of Phe codons as Tyr compared to wild type, the increase in mistranslation was insufficient to activate an unfolded protein stress response. These findings show that during amino acid starvation a primary role of aaRS quality control is to help the cell mount an effective stress response, independent of the role of editing in maintaining translational accuracy
    corecore