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Abstract

Ribosomal protein synthesis results in the genetically programmed incorporation of amino acids 

into a growing polypeptide chain. Faithful amino acid incorporation that accurately reflects the 

genetic code is critical to the structure and function of proteins as well as overall proteome 

integrity. Errors in protein synthesis are generally detrimental to cellular processes yet emerging 

evidence suggest that proteome diversity generated through mistranslation may be beneficial under 

certain conditions. Cumulative translational error rates have been determined at the organismal 

level, however codon specific error rates and the spectrum of misincorporation errors from system 

to system remain largely unexplored. In particular, until recently technical challenges have limited 

the ability to detect and quantify comparatively rare amino acid misincorporation events, which 

occur orders of magnitude less frequently than canonical amino acid incorporation events. We now 

describe a technique for the quantitative analysis of amino acid incorporation that provides the 

sensitivity necessary to detect mistranslation events during translation of a single codon at 

frequencies as low as 1 in 10,000 for all 20 proteinogenic amino acids, as well as non-

proteinogenic and modified amino acids.
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1. Background

1.1 Overview and definition of mistranslation

Protein synthesis is a complex and energy intensive cellular process. To achieve optimal 

growth rates while conserving cellular resources, cells have developed numerous 

mechanisms to ensure the accuracy of translation and maintenance of proteome fidelity. 

Translation fidelity is maintained in part through the accurate pairing of amino acids with 

cognate tRNAs and accurate selection of aminoacyl-tRNAs at the ribosome [1–3]. Despite 

these mechanisms, amino acid misincorporation occurs once in every 1,000 to 10,000 

codons translated, resulting in around 15% of all proteins in the cell possessing at least one 

mistranslated amino acid [4, 5].

Errors in protein synthesis have traditionally been viewed as detrimental to cellular 

processes, yet emerging evidence suggests beneficial roles for limited mistranslation in 

certain biological contexts [6, 7]. In the yeast Candida albicans, for example, proteome 

diversity generated through mistranslation has been shown to increase phenotypic diversity 

and evasion of host immune response [8]. In contrast, misincorporation of non-proteinogenic 

amino acids often results in decreased cellular fitness [9]. These observations support the 

idea that protein synthesis error rates can vary substantially between different systems and 

that, beyond the level of error, amino acid specific chemicophysical properties play critical 

roles in the determination of cellular toxicity.

Cumulative translational error rates have been determined at the organismal level, yet the 

extent of codon specific error rates and the spectrum of misincorporation error from system 

to system remain less explored. Implementation of high resolution methods to determine 

global baselines for codon specific misincorporation events would provide an essential 

resource for the study of translation, and would prove particularly useful in the development 

of orthogonal translation systems where sensitive detection of off target incorporation is 

essential to the establishment of true orthogonality.

1.2 Uses and requirements within the field

Studies in protein science often depend on the reliable identification of amino acids at a 

specific position within the target protein. Additionally, the ability to accurately quantify site 

specific amino acid incorporation events is critical to our understanding of translation. A 

greater challenge, however, is the ability to measure amino acid misincorporation events 

which occur at frequencies orders of magnitude lower than canonical incorporation events. 

Furthermore, experimental approaches must also be robust in the detection of non-

proteinogenic amino acids, central to the study of synthetic biology. A reliable method for 

the identification and quantification of site specific amino acid incorporation events must 

possess high sensitivity and low bias, be able to accommodate any amino acid moiety at all 

positions within a polypeptide, and must be robust in all manner of biologically relevant 

experimental contexts. This combination of requirements creates an ideal scenario for the 

application of mass spectrometry based approaches.
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1.3 Problems with current approaches

Current approaches for detecting amino acid misincorporation include the use of gain-of-

function reporters, recombinant expressed proteins, and shotgun proteomics. In each case, 

technical limitations impose restrictions on their effective use as reporters of amino acid 

misincorporation. Gain-of-function reporters rely on the site specific misincorporation of a 

target amino acid to restore enzymatic or fluorogenic properties of the reporter. In this case, 

restoration of protein activity is used as a proxy for misincorporation rate. Protein reporters 

for this experimental approach have included β-lactamase, GFP, luciferase, and β-

Galactosidase [10–13]. However, these reporters often lack the sensitivity necessary to 

accurately detect low level misincorporation events. Additionally, functionality is often 

restored by substitution of more than one amino acid at the target position, complicating 

interpretation of results.

The use of recombinantly expressed proteins as reporters of protein mistranslation has been 

explored in a variety of contexts. This approach relies on the measurement of naturally 

occurring misincorporation events within the entire polypeptide, rather than focusing on a 

site specific misincorporation event [14, 15]. Affinity purification of the reporter protein 

from the cytoplasmic pool of proteins is often used to isolate the protein of interest prior to 

analysis. As a result, misincorporation events that lead to misfolded proteins are often 

underrepresented due to degradation or reduction in solubility [16]. Post isolation, the 

protein is analyzed by mass spectrometry, where, depending upon the impact of 

misincorporation events on protein structure, the ionization of differentially mistranslated 

proteins may create biases in peptide detection [17]. Additionally, traditional analysis of 

peptides is confounded by the occurrence of multiple misincorporation events within the 

same peptide, further reducing overall sensitivity of the approach. An ideal reporter of 

mistranslation must faithfully report all translation events regardless of their impact on 

structure or function of the protein, creating a context independent parallel of the biological 

question.

Global analysis of proteomic misincorporation events has been explored using recent 

developments in “shotgun” proteomics techniques. The shotgun approach, in theory, allows 

for a comprehensive analysis of the entire cellular complement of proteins and has been used 

to detect misincorporation events across the proteome [18]. In practice, however, the 

predicted misincorporation event must be anticipated due to limitations in current data 

analysis strategies based on data-base searching algorithms and unbiased sequence surveys 

which lack the ability to accurately detect all possible mistranslation events and have been 

associated with extremely high false discovery rates [19, 20]. As with most mass 

spectrometry based proteomic analyses, coverage is often incomplete due to variations in the 

primary sequence and overall structure of a target protein affect fragmentation and ionization 

of target peptides, decreasing overall abundance below the limit of detection and reducing 

the likelihood of observing rare misincorporation events [21].

1.4 Overview of how MS-READ overcomes these issues

As outlined above, the use of a proteins as reporters of mistranslation has been explored 

previously. However, these techniques are prone to peptide ionization biases due, in part, to 
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the highly structured conformation of most proteins. Misincorporation events may 

exacerbate this effect by altering the structure of the protein and potentially the charge state 

of the target peptide. As a result, the peptide of interest may vary in abundance, confounding 

detection and analysis of misincorporation events. The Mass Spectrometry Reporter for 

Exact Amino acid Decoding (MS-READ) approach largely overcomes ionization issues 

through the use of an unstructured elastin-derived polypeptide as the reporter component of 

the protein construct. Elastin is an amorphous protein composed primarily of hydrophobic 

amino acids which allow for predictable and consistent ionization of peptide constituents. 

Our approach offers a low-cost, label free quantitation method that is easy to implement and 

allows for the sensitive and accurate detection of amino acids at a flexible codon position.

1.5 Design and composition of MS-READ reporter

MS-READ centers on the monitoring of site-specific amino acid incorporations within a 

reporter peptide. The reporter peptide was constructed based on an elastin-like polypeptide 

sequence containing a VPGXG repeat where X has been shown to be highly permissive to 

the incorporation of any amino acid expect proline [22]. The elastin-like polypeptide domain 

was fused to green fluorescent protein (GFP) to aid the stable expression of the reporter 

peptide while providing a simple means to monitor reporter expression via fluorescence 

spectroscopy. GFP was selected based on its high tolerance for amino acid misincorporation 

events and ease of detection based on its fluorescent properties. The GFP fusion was tagged 

at the C-terminus with six His residues to facilitate reporter isolation using standard metal 

affinity techniques (Figure 1A).

2. Methods

2.1 MS-READ Plasmid Construction and Reporter Expression

2.1.1 EcMS-READ Plasmid Construction and Reporter Expression—The MS-

READ plasmid was constructed by direct gene synthesis (IDT gBlocks) of the N-terminal 

extension (MSKGPGKVPGAGVPGXGVPGVGKGGGT, see Fig S1) and by sub-cloning 

synthetic DNA fragments into a PCRT7 NT Topo tetR pLtetO plasmid containing GFP (5′-

KpnI/3′HindIII) as described in Pirman et al. 2015. Specific gBlock variants were made to 

add different codons (ACA-Thr, TAG-Amber, and an NNK random library) at position X in 

the N-terminal extension. All plasmid variants were validated by sequencing. NNK library 

members were sub-cloned out and individual codons representing all 20 amino acids were 

confirmed by sequencing (Figure 1 and S1). Protein expression was carried out as in Pirman 

et al. 2015. For experiments in E. coli, culture growth in LB or minimal medium (M9) with 

or without Ser supplementation was monitored by UV/Vis spectroscopy at 600nm (OD600). 

E. coli MG1655 harboring EcMS-READ plasmid was maintained in the presence of 

ampicillin (50 μg/ml). Protein expression was induced with 100 ng/mL anhydotetracycline at 

an OD600 of 0.5. Cultures were grown an additional 4 hours, quenched on ice and pelleted at 

2,000 × g (15 min at 4°C). The supernatant was discarded and the cell pellets were frozen at 

−80°C to assist with subsequent protein extraction.

2.1.2 ScMS-READ Plasmid Construction and Reporter Expression—For 

construction of the ScMS-READ plasmid, the ELP reporter sequence was fused to the N-
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terminus of a yeGFP and placed under the control of a constitutive promoter (TEF1). The 

coding sequences for TEF1, the ELP reporter fragment, and yeGFP were amplified from the 

plasmids pYM-N18, EcMS-READ, and pYM25, respectively, by PCR. Fragments were 

assembled into the MCS of plasmid pXRH3 using Gibson Assembly per manufacturer 

recommendations (NEB, Ipswich, MA). For experiments in S. cerevisiae, culture growth in 

minimal medium without His (SDMM-His) was monitored by UV/Vis spectroscopy at 

600nm (OD600). WT and PheRS proofreading deficient (frs1-1) S. cerevisiae strains were 

transformed with ScMS-READ plasmid with a codon for Phe (UUU) at the variable position 

and maintained in the absence of His. At an OD600 of 0.8–1.0, cultures were quenched on 

ice and pelleted at 2,000 × g (15 min at 4°C). The supernatant was discarded and the cell 

pellets were frozen at −80°C.

2.2 Reporter Protein Purification

2.2.1 Purification from E. coli—Frozen E. coli cell pellets were thawed on ice and 

pellets were lysed by sonication with lysis buffer consisting of 50 mM Tris-HCl (pH 7.4, 

23°C), 500 mM NaCl, 0.5 mM EGTA, 1mM DTT, 10 % glycerol, 50 mM NaF, and 1 mM 

Na3O4V. The extract was clarified with two rounds of centrifugation performed for 20 

minutes at 4 °C and 14,000 × g. Cell free extracts were applied to Ni-NTA metal affinity 

resin and purified according to the manufacturer’s instructions. Wash buffers contained 50 

mM Tris pH 7.5, 500 mM NaCl, 0.5 mM EGTA, 1mM DTT, 50 mM NaF, 1 mM Na3VO4 

and increasing concentrations of imidazole 20 mM, 40mM, and 60mM, sequentially. 

Proteins were eluted with wash buffer containing 250 mM imidazole. Eluted protein was 

subjected to 4 rounds of buffer exchange (20mM Tris pH 8.0 and 100mM NaCl) and 

concentrated using a 30 kDa molecular weight cutoff spin filter (Amicon).

2.2.2 Purification from S. cerevisiae—Frozen yeast cell pellets were thawed and 

incubated with 300U/ml of zymolyase for 20 minutes at RT. Lysis buffer was added to the 

digested cells, along with sterile 0.1 mm acid washed glass beads. Cell suspensions were 

vortexed 6 times, 30 seconds per round. Samples were briefly sonicated and the supernatant 

was removed after two rounds of centrifugation at 14,000 × g for 20 minutes. The remaining 

pellet was re-extracted and resulting fractions were combined. Cell free extracts were 

applied to Ni-NTA metal affinity resin and purified as above. SDS–PAGE electrophoresis 

followed by staining with Coomassie blue revealed greater than 90% purity. Protein 

concentration was determined by UV/Vis spectroscopy at 280nm using a nanodrop 

spectrophotometer. Samples were frozen and stored at −80°C.

2.3 Protein Digestion and mass spectrometry

2.3.1 Sample Preparation—Affinity purified, buffer exchanged protein was digested 

using a 2-step digestion protocol with Lysyl Endopeptidase (LysC) and trypsin and analyzed 

by mass spectrometry. A detailed description of the digestion protocol has been provided 

earlier [23]. Briefly, the concentration of protein was determined by UV280 spectroscopy on 

a NanoDrop (Thermo Fisher) and aliquots corresponding to 40 μg or 20 μg GFP reporter 

from E. coli or S. cerevisiae respectively were dissolved in 50 μl solubilization buffer 

consisting of 10 mM Tris-HCl pH=8.5 (23°C), 10 mM DTT, 1 mM EDTA and 0.5 % acid 

labile surfactant (ALS-101, Protea). Samples were heat denatured for 6 min at 95 °C in a 
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heat block. Alkylation of cysteines was performed with iodoacetamide (IAA) using a final 

IAA concentration of 24 mM. The alkylation reaction proceeded for 30 min at room 

temperature and in the dark. Excess IAA was quenched with DTT and the buffer 

concentration was adjusted using a 1 M Tris-HCl stock solution (pH=8.5) resulting in a final 

Tris-HCl concentration of 150 mM. Digestion with LysC (Wako) was performed for 4 h at 

37 °C using 3.5·10−5 units LysC per 1 μg of GFP. The reaction was then diluted with water 

and 1 M CaCl2 solution to obtain a ALS-101 concentration of 0.045 % and 2 mM CaCl2 

respectively. Finally, sequencing grade porcine trypsin (Promega) was added to obtain an 

enyzme/protein ratio of 1/5.3 and the digest was incubated for 15 h at 37 °C without 

shaking. The digest was quenched with 20% TFA solution resulting in a sample pH of 2. 

Cleavage of the acid cleavable detergent proceeded for 15 min at room temperature. Digests 

were frozen at −80 °C until further processing.

Peptides were desalted on C18 UltraMicroSpin columns (The Nest Group Inc.) essentially 

following the instructions provided by the manufacturer but using 300 μl elution solvent 

consisting of 80% ACN, 0.1% TFA for peptide elution. Peptides were dried in a vacuum 

centrifuge at room temperature. Dried peptides were reconstituted by vortex by sequentially 

adding 2.5 μl 70 % formic acid, 3.75 μl 1-propanol and 8.75 μl 0.5 % acetic acid and the 

peptide concentration was determined by UV280 using a NanoDrop. Peptide stock solution 

were diluted to a concentration of 50ng/ul in glass HPLC vials (Agilent) using LC-MS 

solvent. The composition of the LC-MS solvent was 100 μg/ul sodium deoxycholate 

prepared in a solvent mixture of 5 % DMSO and 95 % of a solvent mixture consisting of 

19 % formic acid/0.07 % TFA in water.

2.3.1 Liquid chromatograph mass spectrometry—LC-MS/MS was performed on an 

Orbitrap Velos using a Top10 HCD method as described previously [23] but using an 

optimized solvent gradient for peptide separation. The trapping column consisted of a 3 cm 

× 150 μm Kasil frit terminated fused silica capillary packed with 3 μm particle size Reprosil-

Pur 120 C18-AQ (Dr Maisch GmBH). The analytical column was a 20 cm × 75 μm ID 

picofrit (New Objective) column packed with 1.9 μm particle size Reprosil-Pur 120 C18-AQ 

(Dr Maisch GmBH) to a length of 20 cm. Trapping column and analytical column were 

connected using a vented split setup using a low dead volume T metal connector where the 

spray voltage was applied. Eluent A was 0.1 % formic acid in water and eluent B was 0.1 % 

formic acid in acetonitrile. Trapping of peptides was performed for 5 min at a flow rate of 

2.5 μl/min with an eluent composition of 2 % B. Gradient separation of peptides proceeded 

at a flow rate of 300 nl/min using the following linear gradient program (min/%B): 0.0/2.0, 

0.1/2.0, 60.00/25.0, 70.0/40, 72.0/95.0, 78.0/95.0 80.0/2.0, 90.0/2.0. An estimated 150 ng of 

the digest was injected for each experiment.

2.4.2 Data Analysis—A detailed description of the bioinformatics strategy for the 

identification of amino acids at a target site has been described previously [24, 25]. Briefly, 

raw spectra were processed and matched using MaxQuant [26] v. 1.5.1.2 or 1.5.3.30 

software. Unless noted otherwise, the default processing parameters for MaxQuant were 

used. Searches were performed with a custom database of the MS-READ reporter N-

terminal extension containing all potential canonical AA at position X, and an E. coli 
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(UniProt strain K12, 4313 sequences, release version 2014_08) or S. cerevisiae protein 

database (Uniprot, strain AWRI1631, 5450 sequences, downloaded 27 August 2015) 

respectively. The enzyme specificity was trypsin\P allowing up to 3 missed cleavages. The 

search tolerances were 20 ppm for precursor and 20 ppm for fragment ions respectively. 

Carbamidomethylation of cysteines was specified as a fixed modification and deamidation 

(N/Q) and oxidation (M) were variable modifications. Peptides and proteins were reported 

with an estimated false discovery rate of 1 % and all peptides and proteins matching 

common sample contaminants or the reverse database were removed in Perseus [27] 

software v. 1.4.0.20.

3. Results

3.1 Comprehensive resolution of amino acid incorporation based on retention time

To demonstrate the permissibility of the reporter to amino acid incorporation, we 

constructed a library of reporters using a degenerate NNK codon at position 16 of the 

polypeptide which yielded 30 out of 32 potential codons (Figure 1B). The entire population 

of reporter constructs was expressed recombinantly in E. coli and tryptic reporter peptides 

were analyzed according to the protocol outlined above (Figure 2A). Reporter peptides (with 

the exception of Ile and Leu containing peptides) displayed unique retention signatures 

based on the amino acid incorporated at the variable codon position (Figure 2B). The ability 

to chromatographically resolve unique peptides within a mixed population streamlines 

deconvolution of mass spectra and highlights the ability of the reporter polypeptide to 

accurately identify amino acid incorporation events (Figure S2).

3.2 Measurement of aaRS-mediated mistranslation in E. coli and S. cerevisiae

To explore the use of MS-READ as a means to measure aaRS-mediated mistranslation, the 

incorporation of amino acids was monitored at a Thr (ACA) codon within the reporter 

construct transformed into a strain of E. coli harboring an proofreading deficient threonyl-

tRNA synthetase (ThrRS). The proofreading defective ThrRS has previously been shown to 

misactivate Ser and misacylate tRNAThr to form stable Ser-tRNAThr in vivo [10]. As 

expected, only Thr was detected at the Thr codon in reporter peptides isolated from the WT 

ThrRS E. coli strain. In accordance with previous observations, Ser incorporation at the Thr 

codon was also detected in the ThrRS editing deficient strain of E. coli (Figure 3A). The 

cellular effects of Ser misincorporation were explored through determination of temperature 

dependent growth rates. WT and proofreading deficient cells were grown with and without 

Ser supplementation. The growth rate of WT and proofreading deficient cells was similar 

across all growth temperatures in minimal media, yet the growth rate of proofreading 

deficient strain was reduced during Ser supplementation compared to WT (Figure 3B). By 

demonstrating Ser misincorporation, MS-READ analysis contributes data, previously 

assumed, linking misincorporation events to phenotypic observations [28].

To expand the functionality of MS-READ, we constructed an MS-READ reporter for use in 

Saccharomyces cerevisiae. Similar to the experiments in E. coli above, we sought to 

demonstrate the use of MS-READ in the measurement of aaRS-mediated mistranslation in 

yeast. A reporter construct with a Phe codon at the flexible position was expressed in a strain 
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of S. cerevisiae with an aminoacyl-tRNA proofreading deficient allele of phenylalanyl-tRNA 

synthetase (PheRS). aa-tRNA proofreading deficient PheRS allows for the production and 

accumulation of misacylated Tyr-tRNAPhe [29]. As expected, incorporation of both the 

amino acids Phe and Tyr was observed at the Phe codon in reporter peptides analyzed from 

the proofreading deficient PheRS strain, whereas, only the incorporation of Phe was 

observed from the WT PheRS background (Figure 4). Taken together, these observations 

provide support for the application of MS-READ analysis across all domains of life.

3.4 MS-READ in synthetic biology: monitoring the efficacy of orthogonal translation 
systems

Orthogonal translation systems (OTS) operate in parallel with existing translation machinery 

but provide substrates which expand the repertoire of programmed protein synthesis beyond 

the 20 canonical amino acids [30]. These systems have been used to explore the impact of 

non-proteinogenic amino acids on cellular function and, more recently, to provide a method 

for the site specific incorporation of phosphoserine into a recombinantly expressed protein 

(Figure 5A) [31–33]. Extension of OTS into site specific applications necessitates the ability 

to monitor amino acid incorporation at the site of interest. To demonstrate the application of 

MS-READ towards the assessment of OTS, we expressed and purified reporter protein 

containing a TAG codon at the flexible position which is decoded as phosphoserine when 

used in parallel with the SepOTS. Phsophoserine incorporation was monitored by Phos-Tag 

mediated electrophoretic shift and confirmed by mass spectrometry (Figure 5B and C). The 

MS-READ approach provides a highly sensitive means to monitor the efficacy of OTSs, 

providing a critical tool for both development and implementation.

4. Discussion and Conclusions

4.1 Additional Applications

In addition to the applications explored above, MS-READ may be applied to any number of 

academic or industrial problems. In an academic context, the approach may be used in assay 

development to monitor the bioavailability and utilization of non-proteinogenic amino acids 

in vivo. MS-READ also provides a means to conduct investigations of both global and site 

specific translation events across all major domains of life with previously unobtainable 

sensitivity and resolution. Applied to industry, MS-READ may be utilized to access the 

accuracy of production scale protein synthesis in systems which necessitate high 

translational fidelity. To match the diversity of potential applications, MS-READ workflow 

may be adapted to accommodate any method of mass tagging and quantification (e.g. 

SILAC, SRM/MRM, iTRAQ, etc.) and provides both the versatility to utilize labeling 

strategies in vivo as well as spike in standards for ex vivo quantification.

4.2 Overall Impact

MS-READ combines the best features of previously devised amino acid incorporation 

techniques by allowing the site specific quantification of amino acids within a mass 

spectrometry optimized recombinant reporter protein. Applications of this technology, thus 

far, highlight the global utility of the reporter across multiple domains of life in various 

biologically relevant scenarios. Further, we describe the use of the reporter to monitor the 
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performance of orthogonal translation systems, thus providing additional functionality 

within the field of synthetic biology. Overall, MS-READ is a powerful and versatile 

approach which promises to yield amino acid incorporation data of unprecedented 

resolution, with potential applications limited only by the ability to construct organism 

specific expression platforms.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview or MS-READ method
A: Diagram of MS-READ features and components of reporter which include flexible 

reporter peptide fused to GFP. Amino acid incorporation is monitored at the variable X 

position within the reporter peptide sequence, where X may be any codon. B: Design and 

construction workflow for MS-READ reporter and validation studies.
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Figure 2. Analysis of amino acid incorporation and reporter peptide resolution
A: MS-READ reporter constructs with 30/32 codons were expressed and processed in 

parallel. Peptides containing each of the 20 proteinogenic amino acids were 

chromatographically resolved and observed within the population. B: Each amino acid 

specific peptide (with the exception of L and I, denoted by *) displayed a unique retention 

time signature. Peptides containing K and R were subject to additional cleavage events 

during tryptic digest, denoted by ** and ***, respectively. † denotes miss-cleaved K and R 

peptides that were observed but not reported in (B).
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Figure 3. Application of MS-READ to monitor aaRS-mediated misincorporation in E. coli
A: WT and ThrRS proofreading deficient strains of E. coli harboring MS-READ plasmids 

with a Thr codon at the flexible position were examined for Thr → Ser misincorporation 

events. B: Extracted ion chromatograms display unique peptide signatures for both Thr and 

Ser containing peptides. C: Phenotypic effects of Ser misincorporation were examined by 

monitoring growth of both WT and ThrRS proofreading deficient strains of E. coli in 

response to challenge with Ser at increasing growth temperatures. Growth data was obtained 

by monitoring absorbance at 600nm and the growth rate was determined as a function of 

time. Error bars are representative of 1 SD from experiments conducted in triplicate.
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Figure 4. Application of MS-READ to monitor aaRS-mediated misincorporation in yeast
A: WT and PheRS proofreading deficient strains of S. cerevisiae harboring MS-READ 

plasmids with a Phe codon at the flexible position were examined for Phe → Tyr 

misincorporation events. Extracted ion chromatograms display unique peptide signatures for 

both Phe and Tyr- containing peptides. Relative misincorporation rates were determined 

from extracted ion chromatograms and reported as the fraction of Tyr incorporation relative 

to Phe. The standard deviation was determined from duplicate biological replicates.
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Figure 5. Application of MS-READ to monitor orthogonal translation systems
A: Diagram of the application of MS-READ to monitor phosphoserine incorporation 

through the use of orthogonal phosphoserine translation systems in vivo. Site specific 

incorporation of phosphoserine may be achieved using a suppressor tRNA which recognizes 

an amber stop codon. B: EcMS-READ reporter protein was expressed in the presence of 

SepOTS. Phosphoserine containing protein was separated from non-phsophoserine 

containing protein electrophoreticlaly using SDA-PAGE gel containing Phos-Tag 

acrylamide. Protein was detected by immunoblot using antibody specific for Hisx6. C: 
Annotated tandem mass spectrum from EcMS-READ reporter protein confirming the site-

specific incorporation of phosphoserine (ph). The doubly charged parent ion mass to charge 

ratio (M/Z) is shown with the corresponding MaxQuant (MQ) ion score. Fragments ions are 

annotated (y and b) with neutral loss, phosphorylation signature fragments identified (*).
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