8 research outputs found

    Analysis of selected cell populations in tissues by MALDI MS

    Get PDF

    Combined biological and chemical assessment of estrogenic activities in wastewater treatment plant effluents

    Get PDF
    Five wastewater treatment plant effluents were analyzed for known endocrine disrupters and estrogenicity. Estrogenicity was determined by using the yeast estrogen screen (YES) and by measuring the blood plasma vitellogenin (VTG) concentrations in exposed male rainbow trout (Oncorhynchus mykiss). While all wastewater treatment plant effluents contained measurable concentrations of estrogens and gave a positive response with the YES, only at two sites did the male fish have significantly increased VTG blood plasma concentrations after the exposure, compared to pre-exposure concentrations. Estrone (E1) concentrations ranged up to 51ngL−1, estradiol (E2) up to 6ngL−1, and ethinylestradiol (EE2) up to 2ngL−1 in the 90samples analyzed. Alkylphenols, alkylphenolmonoethoxylates and alkylphenoldiethoxylates, even though found at ”gL−1 concentrations in effluents from wastewater treatment plants with a significant industrial content, did not contribute much to the overall estrogenicity of the samples taken due to their low relative potency. Expected estrogenicities were calculated from the chemical data for each sample by using the principle of concentration additivity and relative potencies of the various chemicals as determined with the yeast estrogen screen. Measured and calculated estradiol equivalents gave the same order of magnitude and correlated rather well (R 2=0.6

    Comparative analysis of estrogenic activity in sewage treatment plant effluents involving three in vitro assays and chemical analysis of steroids

    No full text
    In this study, we assessed and compared the suitability of three in vitro screening tools for the measurement of estrogenic activity in sewage treatment plant effluents (STPEs). These assays were the yeast estrogen screen (YES), production of zona radiata proteins (ZRPs) in trout hepatocytes, and the induction of reporter gene expression in the transfected rainbow trout gonad cell line RTG-2. Data obtained with the YES were additionally compared with calculated estrogenicity, based on steroid analysis data of the effluents. For comparison purposes, the response of the in vitro systems toward the estrogenic chemicals ÎČ-estradiol, ethinyl estradiol, bisphenol-A, nonylphenol, and octylphenol was assessed. All three assays showed sensitivities in the same order of magnitude in response to the steroid compounds tested, with ZRP production being the least sensitive. Regarding the estrogenic environmental chemicals tested, the RTG-2 assay was more than an order of magnitude more sensitive than the other two assays. Despite their different sensitivities toward selected test chemicals, the three in vitro systems indicated estrogenic activity in the same concentration range for the tested STPEs. Calculated estrogenicity (chemical analysis) and measured estrogenicity (YES) were of the same order of magnitude for the STPEs tested. The present study indicates that all three in vitro systems, with the yeast-based system being the easiest and most robust, are applicable for the screening of estrogenic activity in effluent samples
    corecore