17 research outputs found

    High average power first-order distributed feedback quantum cascade lasers

    Get PDF
    We present distributed feedback quantum cascade lasers at 965 cm-1 with a high average optical output power at temperatures of up to 60°C. At a duty cycle of 3%, the averaged maximal output power of a 55-μm wide and 1.5-mm-long device at -30°C was 13.6 mW; at 60°C, the device emitted 2 mkV. Corresponding peak optical powers of 450 mW at -30°C and of 70 mW at 60°C have been observed. Due to the lateral current injection, we achieved single-mode behavior in a slightly distorted zero-order lateral mode across the whole range of investigated temperatures and output powers. At room temperature, the threshold current density was on the order of 6.7 kA/cm2; the characteristic temperature T0 was, due to tuning of the Bragg resonance into the gain curve, rather high, namely 310 K

    Bound-to-continuum and two-phonon resonance, quantum-cascade lasers for high duty cycle, high-temperature operation

    Get PDF
    Recent advances in quantum-cascade (QC) laser active-region design are reviewed. Based on a rate equation model of the active region, we show why new gain regions. based on a two-phonon resonance or a bound-to-continuum transition exhibit significantly better performance than the traditional design based on a three-quantum-well active region. Threshold current densities as low as 3 kA/cm2 at T = 300 K, operation with a peak power of 90 mW at 425 K, single-mode high-power operation up to temperatures above 330 K at λ ≈ 16 μm and continuous wave operation up to T = 311 K are demonstrated. QC lasers able to operate at high duty cycles (50%) on a Peltier cooler were used in a demonstration of a 300-MHz free-space optical link between two buildings separated by 350 m

    Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler

    Get PDF
    Continuous-wave operation of λ~9 µm distributed-feedback quantum-cascade lasers is reported up to a temperature of 260 K. Single-frequency emission with a side mode suppression ratio of ≥27 dB and with a tuning range of 5 cm–1 between 200 and 245 K (a tunability of –0.078 cm–1/K and –0.764 cm–1/W) is obtained for the junction-down mounted buried heterostructure devices. Uncoated lasers display an output power of up to 18 mW at 180 K and still 1 mW at 250 K. Lasers with high-reflection coated facets could be operated up to 260 K

    Continuous wave operation of quantum cascade lasers

    Get PDF
    Continuous wave (CW) operation of quantum cascade lasers is reported up to temperatures of 312 K. The devices were fabricated as buried heterostructure lasers and episide-down mounted for improved heat dissipation. Fabry–Perot lasers emitted 17 mW of continuous optical power at 292 K and still 3 mW at 311 K at λ=9.12 μm. Distributed feedback quantum cascade lasers showed CW single-mode operation up to 260 K at λ=9.0 μm with a side mode suppression rate better than 30 dB

    High-temperature operation of distributed feedback quantum-cascade lasers at 5.3 <i>µ</i>m

    Get PDF
    High-temperature operation of a low-threshold 5.3 µm quantum-cascade distributed feedback laser is presented. The emission spectrum was single mode with more than 20 dB side mode suppression ratio for all investigated temperatures and up to thermal rollover. For 1.5% duty cycle and at 0 °C, the laser emitted 1.15 W of single mode peak power; at 120 °C, a value of 92 mW was seen. For a 3 mm long device, we observed a room-temperature threshold current density of 3.6 kA/cm2. This remarkable performance is mainly due to a 4 quantum-well active region using a double phonon resonance for the lower laser level

    23 GHz operation of a room temperature photovoltaic quantum cascade detector at 5.35 <i>µ</i>m

    Get PDF
    We present a room temperature operated 5.35 µm quantum cascade detector which was tested at high frequencies using an optical heterodyne experiment. Two slightly detuned continuous wave distributed feedback single mode quantum cascade lasers were used to generate a beating signal. The maximum frequency at which the resulting microwave signal could be detected was 23 GHz. The cutoff behavior of our device was modeled with a simple RLC circuit and showed excellent agreement with the experimental data

    Continuous-wave operation of quantum cascade laser emitting near 5.6 µm

    Get PDF
    Buried heterostructure quantum cascade lasers emitting at 5.64 µm are presented. Continuous-wave (CW) operation has been achieved at –30°C for junction down mounted devices with both facets coated. A 750 µm-long laser exhibited 3 mW of CW power with a threshold current density of 5.4 kA/cm2

    Mid-infrared trace-gas sensing with a quasi- continuous-wave Peltier-cooled distributed feedback quantum cascade laser

    Get PDF
    A recently developed distributed feedback quantum cascade laser (QCL) capable of thermoelectric-cooled (TEC) continuous-wave (cw) operation and emitting at ~9 μm is used to perform laser chemical sensing by tunable infrared spectroscopy. A quasi-continuous-wave mode of operation relying on long current pulses (~5 Hz, ~50% duty cycle) is utilized rather than pure cw operation in order to extend the continuous frequency tuning range of the quantum cascade laser. Sulfur dioxide and ammonia were selected as convenient target molecules to evaluate the performance of the cw TEC QCL based sensor. Direct absorption spectroscopy and wavelength-modulation spectroscopy were performed to demonstrate chemical sensing applications with this novel type of quantum cascade laser. For ammonia detection, a 18-ppm noise-equivalent sensitivity (1 σ) was achieved for a 1-m absorption path length and a 25-ms data-acquisition time using direct absorption spectroscopy. The use of second-harmonic-detection wavelength-modulation spectroscopy instead of direct absorption increased the sensitivity by a factor of three, achieving a normalized noise-equivalent sensitivity of 82 ppbHz-1/2 for a 1-m absorption path length, which corresponds to 2×10-7 cm-1Hz-1/2

    Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature

    Get PDF
    Continuous wave operation of quantum cascade lasers is reported up to a temperature of 312 kelvin. The devices were fabricated as buried heterostructure lasers with high-reflection coatings on both laser facets, resulting in continuous wave operation with optical output power ranging from 17 milliwatts at 292 kelvin to 3 milliwatts at 312 kelvin, at an emission wavelength of 9.1 micrometers. The results demonstrate the potential of quantum cascade lasers as continuous wave mid-infrared light sources for high-resolution spectroscopy, chemical sensing applications, and free-space optical communication systems

    Distributed-feedback quantum cascade lasers emitting in the 9-<i>μ</i>m band with InP top cladding layers

    Get PDF
    Two different high performance quantum cascade distributed-feedback lasers with four quantum-well-based active regions and InP top cladding layers are presented. The first device, which emitted at 9.5 μm, was mounted junction down in order to get high average powers of up to 71 mW at -30°C and 30 mW at room temperature. The other device, which lased at 9.1 μm, was optimized for high pulsed operating temperatures and tested up to 150°C at 1.5% duty cycle. The emission of both lasers stayed single mode with more than 20-dB side-mode suppression ratio over the entire investigated power and temperature range
    corecore