52 research outputs found

    Single Platinum Atoms Electrocatalysts: Oxygen Reduction and Hydrogen Oxidation Reactions

    Get PDF
    Atomically dispersed catalyst consisting of Pt atoms arranged in a c(2 × 2) array on RuO2(110) substrate was prepared. A large interatomic distance of Pt atoms in a c(2 × 2) phase precludes the reactants to interact with more than one Pt atoms. A strong bond of Pt atoms with RuO2 prevents agglomeration of Pt atoms to form 2D-islands or 3D-clusters. Activities of single Pt atom catalyst for the oxygen reduction and hydrogen oxidation reactions were determined and compared with those of bulk Pt. It has lower catalytic activity for the oxygen reduction reaction and similar activity for hydrogen oxidation reaction compared to Pt(111). This was explained by a large calculated up-shift of the d-band center of Pt atoms and larger Pt-Pt interatomic distance than that of Pt(111). This information is of considerable interest for further development of electrocatalysis. This work is licensed under a Creative Commons Attribution 4.0 International License

    High CO tolerance of Pt/Ru nano-catalyst: insight from first principles calculation

    Get PDF
    Density functional theory based calculations of the energetics of adsorption and diffusion of CO on Pt islets and on the Ru(0001) substrate show that CO has the lowest adsorption energy at the center of the islet, and its bonding increases as it moves to the edge of the island and further onto the substrate. Activation energy barriers for CO diffusion from the islet to the Ru surface are found to be lower than 0.3 eV making the process feasible and leading to the conclusion that this hydrogen oxidation catalyst is CO tolerant because of the spillover of CO from active Pt sites to the Ru substrate. We present the rationale for this effect using insights from detailed electronic structure calculations.Comment: 6 pages, 5 figure

    Ordered mesoporous porphyrinic carbons with very high electrocatalytic activity for the oxygen reduction reaction

    Get PDF
    The high cost of the platinum-based cathode catalysts for the oxygen reduction reaction (ORR) has impeded the widespread application of polymer electrolyte fuel cells. We report on a new family of non-precious metal catalysts based on ordered mesoporous porphyrinic carbons (M-OMPC; M = Fe, Co, or FeCo) with high surface areas and tunable pore structures, which were prepared by nanocasting mesoporous silica templates with metalloporphyrin precursors. The FeCo-OMPC catalyst exhibited an excellent ORR activity in an acidic medium, higher than other non-precious metal catalysts. It showed higher kinetic current at 0.9a�...V than Pt/C catalysts, as well as superior long-term durability and MeOH-tolerance. Density functional theory calculations in combination with extended X-ray absorption fine structure analysis revealed a weakening of the interaction between oxygen atom and FeCo-OMPC compared to Pt/C. This effect and high surface area of FeCo-OMPC appear responsible for its significantly high ORR activity.open251

    DFT Study of Oxygen Reduction Reaction on Os/Pt Core−Shell Catalysts Validated by Electrochemical Experiment

    Get PDF
    Proton exchange membrane fuel cells (PEMFCs) have attracted much attention as an alternative source of energy with a number of advantages, including high efficiency, sustainability, and environmentally friendly operation. However, the low kinetics of the oxygen reduction reaction (ORR) restricts the performance of PEMFCs. Various types of catalysts have been developed to improve the ORR efficiency, but this problem still needs further investigations and improvements. In this paper, we propose advanced Os/Pt core–shell catalysts based on our previous study on segregation of both bare surfaces and surfaces exposed to ORR adsorbates, and we evaluate the catalytic activity of the proposed materials by density functional theory (DFT). Quantum mechanics was applied to calculate binding energies of ORR species and reaction energy barriers on Os/Pt core–shell catalysts. Our calculations predict a much better catalytic activity of the Os/Pt system than that of pure Pt. We find that the ligand effect of the Os substrate is more important than the lattice compression strain effect. To validate our DFT prediction, we demonstrate the fabrication of Os/Pt core–shell nanoparticles using the underpotential deposition (UPD) technique and succeeding galvanic displacement reaction between the Pt ions and Cu-coated Os nanoparticles. The Os/Pt/C samples were evaluated for electrocatalytic activities toward the ORR in acidic electrolytes. The samples with two consecutive UPD-displacement reaction cycles show 3.5 to 5 times better ORR activities as compared to those of commercially available Pt/C. Our results show good agreement between the computational predictions and electrochemical experimental data for the Os/Pt core–shell ORR catalysts

    Infrared spectroscopy of bare single crystal and nano-particle covered surfaces

    No full text
    Infrared spectroelectrochemistry is the leading technique for in situ investigation of electrode – solution interfaces because it can both identify the species adsorbed at the metal/solution interface, and quantitatively follow their reaction and kinetic behavior. The unique capabilities of the method have been demonstrated by selective examples, including the identification of preferentially adsorbed species on single crystal surfaces of noble metals with hexagonal symmetry, and electrochemical oxidation of CO on bare and Pt-decorated single crystal Ru surfaces

    Platinum Monolayer Electrocatalysts for the Oxygen Reduction Reaction: Improvements Induced by Surface and Subsurface Modifications of Cores

    No full text
    This paper demonstrates that the ORR activity of PtML electrocatalysts can be further improved by the modification of surface and subsurface of the core materials. The removal of surface low-coordination sites, generation (via addition or segregation) of an interlayer between PtML and the core, or the introduction of a second metal component to the subsurface layer of the core can further improve the ORR activity and/or stability of PtML electrocatalysts. These modifications generate the alternation of the interactions between the substrate and the PtML, involving the changes on both electronic (ligand) and geometric (strain) properties of the substrates. The improvements resulted from the application of these approaches provide a new perspective to designing of the new generation PtML electrocatalysts

    Platinum Monolayer Electrocatalysts for Anodic Oxidation of Alcohols

    No full text
    The slow, incomplete oxidation of methanol and ethanol on platinum-based anodes as well as the high price and limited reserves of Pt has hampered the practical application of direct alcohol fuel cells. We describe the electrocatalysts consisting of one Pt monolayer (one atom thick layer) placed on extended or nanoparticle surfaces having the activity and selectivity for the oxidation of alcohol molecules that can be controlled with platinum-support interaction. The suitably expanded Pt monolayer (i.e., Pt/Au(111)) exhibits a factor of 7 activity increase in catalyzing methanol electrooxidation relative to Pt(111). Sizable enhancement is also observed for ethanol electrooxidation. Furthermore, a correlation between substrate-induced lateral strain in a Pt monolayer and its activity/selectivity is established and rationalized by experimental and theoretical studies. The knowledge we gained with single-crystal model catalysts was successfully applied in designing real nanocatalysts. These findings for alcohols are likely to be applicable for the oxidation of other classes of organic molecules

    Multifunctional Ultrathin Pd x

    No full text
    corecore