1,010 research outputs found

    Detonating Cord for Flux Compression Generation using Electrical Detonator No. 33

    Get PDF
    The paper highlights the use of electrical detonators for magnetic flux compression generator applications which requires synchronisation of two events with precise time delay of tens of ms and jitter within a few ms. These requirements are generally achieved by exploding bridge wire type detonators which are difficult to develop and are not commercially available. A technique has been developed using commercially available electrical detonator no. 33 to synchronise between peak of seed current in stator coil and detonation of explosive charge in armature. In present experiments, electrical signal generated by self-shorting pin due to bursting of electrical detonator has been used to trigger the capacitor discharge and the detonating cord of known length has been used to incorporate predetermined delay to synchronise the events. It has been demonstrated that using electrical detonator and known length of detonating cord, the two events can be synchronised with predetermined delay between 31 and 251 ms with variation of ± 0.5ms. The technique developed is suitable for defence applications like generation of high power microwaves using explosive driven magnetic flux compression generators.Defence Science Journal, 2011, 61(1), pp.19-24, DOI:http://dx.doi.org/10.14429/dsj.61.3

    Rule-Based Forecasting: Using Judgment in Time-Series Extrapolation

    Get PDF
    Rule-Based Forecasting (RBF) is an expert system that uses judgment to develop and apply rules for combining extrapolations. The judgment comes from two sources, forecasting expertise and domain knowledge. Forecasting expertise is based on more than a half century of research. Domain knowledge is obtained in a structured way; one example of domain knowledge is managers= expectations about trends, which we call “causal forces.” Time series are described in terms of 28 conditions, which are used to assign weights to extrapolations. Empirical results on multiple sets of time series show that RBF produces more accurate forecasts than those from traditional extrapolation methods or equal-weights combined extrapolations. RBF is most useful when it is based on good domain knowledge, the domain knowledge is important, the series is well behaved (such that patterns can be identified), there is a strong trend in the data, and the forecast horizon is long. Under ideal conditions, the error for RBF’s forecasts were one-third less than those for equal-weights combining. When these conditions are absent, RBF neither improves nor harms forecast accuracy. Some of RBF’s rules can be used with traditional extrapolation procedures. In a series of studies, rules based on causal forces improved the selection of forecasting methods, the structuring of time series, and the assessment of prediction intervals

    Novel insights into the cardio-protective effects of FGF21 in lean and obese rat hearts

    Get PDF
    Aims: Fibroblast growth factor 21 (FGF21) is a hepatic metabolic regulator with pleotropic actions. Its plasma concentrations are increased in obesity and diabetes; states associated with an increased incidence of cardiovascular disease. We therefore investigated the direct effect of FGF21 on cardio-protection in obese and lean hearts in response to ischemia. Methods and Results: FGF21, FGF21-receptor 1 (FGFR1) and beta-Klotho (βKlotho) were expressed in rodent, human hearts and primary rat cardiomyocytes. Cardiac FGF21 was expressed and secreted (real time RT-PCR/western blot and ELISA) in an autocrine-paracrine manner, in response to obesity and hypoxia, involving FGFR1-βKlotho components. Cardiac-FGF21 expression and secretion were increased in response to global ischemia. In contrast βKlotho was reduced in obese hearts. In isolated adult rat cardiomyocytes, FGF21 activated PI3K/Akt (phosphatidylinositol 3-kinase/Akt), ERK1/2(extracellular signal-regulated kinase) and AMPK (AMP-activated protein kinase) pathways. In Langendorff perfused rat [adult male wild-type wistar] hearts, FGF21 administration induced significant cardio-protection and restoration of function following global ischemia. Inhibition of PI3K/Akt, AMPK, ERK1/2 and ROR-α (retinoic-acid receptor alpha) pathway led to significant decrease of FGF21 induced cardio-protection and restoration of cardiac function in response to global ischemia. More importantly, this cardio-protective response induced by FGF21 was reduced in obesity, although the cardiac expression profiles and circulating FGF21 levels were increased. Conclusion: In an ex vivo Langendorff system, we show that FGF21 induced cardiac protection and restoration of cardiac function involving autocrine-paracrine pathways, with reduced effect in obesity. Collectively, our findings provide novel insights into FGF21-induced cardiac effects in obesity and ischemia

    Neuronal deletion of the circadian clock gene Bmal1 induces cell-autonomous dopaminergic neurodegeneration

    Get PDF
    Circadian rhythm dysfunction is a hallmark of Parkinson disease (PD), and diminished expression of the core clock gene Bmal1 has been described in patients with PD. BMAL1 is required for core circadian clock function but also serves nonrhythmic functions. Germline Bmal1 deletion can cause brain oxidative stress and synapse loss in mice, and it can exacerbate dopaminergic neurodegeneration in response to the toxin MPTP. Here we examined the effect of cell type-specific Bmal1 deletion on dopaminergic neuron viability in vivo. We observed that global, postnatal deletion of Bmal1 caused spontaneous loss of tyrosine hydroxylase+ (TH+) dopaminergic neurons in the substantia nigra pars compacta (SNpc). This was not replicated by light-induced disruption of behavioral circadian rhythms and was not induced by astrocyte- or microglia-specific Bmal1 deletion. However, either pan-neuronal or TH neuron-specific Bmal1 deletion caused cell-autonomous loss of TH+ neurons in the SNpc. Bmal1 deletion did not change the percentage of TH neuron loss after α-synuclein fibril injection, though Bmal1-KO mice had fewer TH neurons at baseline. Transcriptomics analysis revealed dysregulation of pathways involved in oxidative phosphorylation and Parkinson disease. These findings demonstrate a cell-autonomous role for BMAL1 in regulating dopaminergic neuronal survival and may have important implications for neuroprotection in PD

    All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGO’s and Advanced Virgo’s first three observing runs

    Full text link
    We present the first results from an all-sky all-frequency (ASAF) search for an anisotropic stochastic gravitational-wave background using the data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. Upper limit maps on broadband anisotropies of a persistent stochastic background were published for all observing runs of the LIGO-Virgo detectors. However, a broadband analysis is likely to miss narrowband signals as the signal-to-noise ratio of a narrowband signal can be significantly reduced when combined with detector output from other frequencies. Data folding and the computationally efficient analysis pipeline, PyStoch, enable us to perform the radiometer map-making at every frequency bin. We perform the search at 3072 HEALPix equal area pixels uniformly tiling the sky and in every frequency bin of width 1/32  Hz in the range 20–1726 Hz, except for bins that are likely to contain instrumental artefacts and hence are notched. We do not find any statistically significant evidence for the existence of narrowband gravitational-wave signals in the analyzed frequency bins. Therefore, we place 95% confidence upper limits on the gravitational-wave strain for each pixel-frequency pair, the limits are in the range (0.030−9.6)×10−24. In addition, we outline a method to identify candidate pixel-frequency pairs that could be followed up by a more sensitive (and potentially computationally expensive) search, e.g., a matched-filtering-based analysis, to look for fainter nearly monochromatic coherent signals. The ASAF analysis is inherently independent of models describing any spectral or spatial distribution of power. We demonstrate that the ASAF results can be appropriately combined over frequencies and sky directions to successfully recover the broadband directional and isotropic results

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Full text link
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo’s third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours–months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets

    Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data

    Full text link
    Results are presented of searches for continuous gravitational waves from 20 accreting millisecond x-ray pulsars with accurately measured spin frequencies and orbital parameters, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. The search algorithm uses a hidden Markov model, where the transition probabilities allow the frequency to wander according to an unbiased random walk, while the J-statistic maximum-likelihood matched filter tracks the binary orbital phase. Three narrow subbands are searched for each target, centered on harmonics of the measured spin frequency. The search yields 16 candidates, consistent with a false alarm probability of 30% per subband and target searched. These candidates, along with one candidate from an additional target-of-opportunity search done for SAX J1808.4−3658, which was in outburst during one month of the observing run, cannot be confidently associated with a known noise source. Additional follow-up does not provide convincing evidence that any are a true astrophysical signal. When all candidates are assumed nonastrophysical, upper limits are set on the maximum wave strain detectable at 95% confidence, h95%0. The strictest constraint is h95%0=4.7×10−26 from IGR J17062−6143. Constraints on the detectable wave strain from each target lead to constraints on neutron star ellipticity and r-mode amplitude, the strictest of which are ε95%=3.1×10−7 and α95%=1.8×10−5 respectively. This analysis is the most comprehensive and sensitive search of continuous gravitational waves from accreting millisecond x-ray pulsars to date

    Search for Subsolar-Mass Binaries in the First Half of Advanced LIGO’s and Advanced Virgo’s Third Observing Run

    Full text link
    We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 M⊙ and 1.0 M⊙ in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend our previous analyses in two main ways: we include data from the Virgo detector and we allow for more unequal mass systems, with mass ratio q ≥ 0.1. We do not report any gravitational-wave candidates. The most significant trigger has a false alarm rate of 0.14 yr−1. This implies an upper limit on the merger rate of subsolar binaries in the range ½220 − 24200� Gpc−3 yr−1, depending on the chirp mass of the binary. We use this upper limit to derive astrophysical constraints on two phenomenological models that could produce subsolar-mass compact objects. One is an isotropic distribution of equal-mass primordial black holes. Using this model, we find that the fraction of dark matter in primordial black holes in the mass range 0.2 M⊙ < mPBH < 1.0 M⊙ is fPBH ≡ ΩPBH=ΩDM ≲ 6%. This improves existing constraints on primordial black hole abundance by a factor of ∼3. The other is a dissipative dark matter model, in which fermionic dark matter can collapse and form black holes. The upper limit on the fraction of dark matter black holes depends on the minimum mass of the black holes that can be formed: the most constraining result is obtained at Mmin ¼ 1 M⊙, where fDBH ≡ ΩDBH=ΩDM ≲ 0.003%. These are the first constraints placed on dissipative dark models by subsolar-mass analyses

    Search for Gravitational Waves Associated with Fast Radio Bursts Detected by CHIME/FRB during the LIGO–Virgo Observing Run O3a

    Get PDF
    We search for gravitational-wave (GW) transients associated with fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project, during the first part of the third observing run of Advanced LIGO and Advanced Virgo (2019 April 1 15:00 UTC–2019 October 1 15:00 UTC). Triggers from 22 FRBs were analyzed with a search that targets both binary neutron star (BNS) and neutron star–black hole (NSBH) mergers. A targeted search for generic GW transients was conducted on 40 FRBs. We find no significant evidence for a GW association in either search. Given the large uncertainties in the distances of our FRB sample, we are unable to exclude the possibility of a GW association. Assessing the volumetric event rates of both FRB and binary mergers, an association is limited to 15% of the FRB population for BNS mergers or 1% for NSBH mergers. We report 90% confidence lower bounds on the distance to each FRB for a range of GW progenitor models and set upper limits on the energy emitted through GWs for a range of emission scenarios. We find values of order 1051^{51}–1057^{57} erg for models with central GW frequencies in the range 70–3560 Hz. At the sensitivity of this search, we find these limits to be above the predicted GW emissions for the models considered. We also find no significant coincident detection of GWs with the repeater, FRB 20200120E, which is the closest known extragalactic FRB
    corecore