18 research outputs found

    Intercalative pyrimido[4',5':4,5]thieno(2,3-b)quinolines induce apoptosis in leukemic cells: a comparative study of methoxy and morpholino substitution

    No full text
    DNA intercalating molecules are promising anticancer agents. Polycyclic aromatic molecules such as ellipticine intercalate into double-stranded DNA and affect major physiological functions. In the present study, we have characterized two molecules with the same chemical backbone but different side chains, namely 8-methoxy pyrimido[4',5':4,5]thieno (2,3-b)quinoline-4(3H)-one (MPTQ) and 4-morpholino pyrimido[4',5':4,5]thieno(2,3-b)quinoline (morpho-PTQ) at the 8th and 4th position, respectively. Although both MPTQ and morpho-PTQ show similar biophysical properties with high DNA affinity, here we show that they differ in their biological activities. We find that MPTQ is many fold more potent than morpho-PTQ and is cytotoxic against different leukemic cell lines. IC(50) value of methoxy PTQ was estimated between 2-15 A mu M among the leukemic cells studied, while it was more than 200 A mu M when morpho-PTQ was used. Cell cycle analysis shows an increase in sub-G1 phase, without any particular cell cycle arrest. Annexin V staining in conjunction with comet assay and DNA fragmentation suggest that MPTQ induces cytotoxicity by activating apoptosis. Thus the observed low IC(50) value of MPTQ makes it a promising cancer chemotherapeutic agent

    Intercalative pyrimido[4',5':4,5]thieno(2,3-b)quinolines induce apoptosis in leukemic cells: a comparative study of methoxy and morpholino substitution

    No full text
    DNA intercalating molecules are promising anticancer agents. Polycyclic aromatic molecules such as ellipticine intercalate into double-stranded DNA and affect major physiological functions. In the present study, we have characterized two molecules with the same chemical backbone but different side chains, namely 8-methoxy pyrimido[4',5':4,5]thieno (2,3-b)quinoline-4(3H)-one (MPTQ) and 4-morpholino pyrimido[4',5':4,5]thieno(2,3-b)quinoline (morpho-PTQ) at the 8th and 4th position, respectively. Although both MPTQ and morpho-PTQ show similar biophysical properties with high DNA affinity, here we show that they differ in their biological activities. We find that MPTQ is many fold more potent than morpho-PTQ and is cytotoxic against different leukemic cell lines. IC50 value of methoxy PTQ was estimated between 2-15 µM among the leukemic cells studied, while it was more than 200µM when morpho-PTQ was used. Cell cycle analysis shows an increase in sub-G1 phase, without any particular cell cycle arrest. Annexin V staining in conjunction with comet assay and DNA fragmentation suggest that MPTQ induces cytotoxicity by activating apoptosis. Thus the observed low IC50 value of MPTQ makes it a promising cancer chemotherapeutic agent

    A novel DNA intercalator, butylamino-pyrimido[4',5':4,5]selenolo(2,3-b)quinoline, induces cell cycle arrest and apoptosis in leukemic cells

    No full text
    DNA intercalators are one of the most commonly used chemotherapeutic agents. Novel intercalating compounds of pyrimido[4',5':4,5]selenolo(2,3-b)quinoline series having a butylamino or piperazino group at fourth position (BPSQ and PPSQ, respectively) are studied. Our results showed that BPSQ induced cytotoxicity whereas PPSQ was cytostatic. The cytotoxicity induced by BPSQ was concentration- and time-dependent. Cell cycle analysis and tritiated thymidine assay revealed that BPSQ affects the cell cycle progression by arresting at S phase. The absence of p-histone H3 and reduction in the levels of PCNA in the cells treated with BPSQ further confirmed the cell cycle arrest. Further, annexin V staining, DNA fragmentation, nuclear condensation and changes in the expression levels of BCL2/BAD confirmed the activation of apoptosis. Activation of caspase 8 and lack of cleavage of caspase 9, caspase 3 and PARP suggest the possibility of BPSQ triggering extrinsic pathway for induction of apoptosis, which is discussed. Hence, we have identified a novel compound which would have clinical relevance in cancer chemotherapeutics

    A Novel Anticancer Agent, 8-Methoxypyrimido4 `,5 `: 4,5]thieno(2,3-b) Quinoline-4(3H)-One Induces Neuro 2a Neuroblastoma Cell Death through p53-Dependent, Caspase-Dependent and Independent Apoptotic Pathways

    Get PDF
    Neuroblastoma is the most common cancer in infants and fourth most common cancer in children. Despite recent advances in cancer treatments, the prognosis of stage-IV neuroblastoma patients continues to be dismal which warrant new pharmacotherapy. A novel tetracyclic condensed quinoline compound, 8-methoxypyrimido 4 `,5 `: 4,5] thieno(2,3-b) quinoline-4(3H)-one (MPTQ) is a structural analogue of an anticancer drug ellipticine and has been reported to posses anticancer property. Study on MPTQ on neuroblastoma cells is very limited and mechanisms related to its cytotoxicity on neuroblastoma cells are completely unknown. Here, we evaluated the anticancer property of MPTQ on mouse neuro 2a and human SH-SY5Y neuroblastoma cells and investigated the mechanisms underlying MPTQ-mediated neuro 2a cell death. MPTQ-mediated neuro 2a and SH-SY5Y cell deaths were found to be dose and time dependent. Moreover, MPTQ induced cell death reached approximately 99.8% and 90% in neuro 2a and SH-SY5Y cells respectively. Nuclear oligonucleosomal DNA fragmentation and Terminal dUTP Nick End Labelling assays indicated MPTQ-mediated neuro 2a cell death involved apoptosis. MPTQ-mediated apoptosis is associated with increased phosphorylation of p53 at Ser15 and Ser20 which correlates with the hyperphosphorylation of Ataxia-Telangiectasia mutated protein (ATM). Immunocytochemical analysis demonstrated the increased level of Bax protein in MPTQ treated neuro 2a cells. MPTQ-mediated apoptosis is also associated with increased activation of caspase-9, -3 and -7 but not caspase-2 and -8. Furthermore, increased level of caspase-3 and cleaved Poly ( ADP Ribose) polymerase were observed in the nucleus of MPTQ treated neuro 2a cells, suggesting the involvement of caspase-dependent intrinsic but not extrinsic apoptotic pathway. Increased nuclear translocation of apoptosis inducing factor suggests additional involvement of caspase-independent apoptosis pathway in MPTQ treated neuro 2a cells. Collectively, MPTQ-induced neuro 2a cell death is mediated by ATM and p53 activation, and Bax-mediated activation of caspase-dependent and caspase-independent mitochondrial apoptosis pathways

    A novel DNA intercalator, 8‐methoxy pyrimido [4′, 5′: 4, 5] thieno (2, 3‐b) quinoline‐4 (3H)‐one induces apoptosis in cancer cells, inhibits the tumor progression and enhances lifespan in mice with tumor

    No full text
    Polycyclic aromatic molecules such as ellipticine intercalate into double-stranded DNA and interfere with physiological functions. In the present study, we evaluate the chemotherapeutic potential of MPTQ on animal models and its mode of action. In order to test the antitumor activity, monohydrochloride of MPTQ was orally administered in mice bearing tumor. Results showed a significant inhibition of tumor growth compared to that of untreated controls. More importantly, mean lifespan of tumor bearing animals treated with MPTQ was significantly higher as compared to that of untreated tumor bearing mice suggesting that the treatment affected viability of cancerous cells, but not of normal cells. Consistent with this, we find that administration of MPTQ to normal mice did not cause any major side effects as observed upon hematological and serum profiling. We also found that MPTQ induces cytotoxicity in cancer cell lines, by activating apoptosis both by intrinsic and extrinsic pathways. Thus, MPTQ could be used as a potential cancer therapeutic agent

    A novel structural derivative of natural alkaloid ellipticine, MDPSQ, induces necrosis in leukemic cells

    No full text
    DNA intercalating molecules are promising chemotherapeutic agents. In the present study, a novel DNA intercalating compound of pyrimido4',5':4,5]selenolo(2,3-b)quinoline series having 8-methyl-4-(3 diethylaminopropylamino) side chain is studied for its chemotherapeutic properties. Our results showed that 8-methyl-4-(3 diethylaminopropylamino) pyrimido 4',5':4,5] selenolo(2,3-b)quinoline (MDPSQ) induces cytotoxicity in a time- and concentration-dependent manner on leukemic cell lines. Both cell cycle analysis and tritiated thymidine assays revealed that MDPSQ affects DNA replication. Treatment with MDPSQ resulted in both elevated levels of DNA strand breaks and repair proteins, further indicating its cytotoxic effects. Besides, Annexin V/PI staining revealed that MDPSQ induces cell death by triggering necrosis rather than apoptosis

    A novel DNA intercalator, 8-methoxy pyrimido4 `,5 `:4,5]thieno (2,3-b)quinoline-4(3H)-one induces apoptosis in cancer cells, inhibits the tumor progression and enhances lifespan in mice with tumor

    No full text
    Polycyclic aromatic molecules such as ellipticine intercalate into double-stranded DNA and interfere with physiological functions. In the present study, we evaluate the chemotherapeutic potential of MPTQ on animal models and its mode of action. In order to test the antitumor activity, monohydrochloride of MPTQ was orally administered in mice bearing tumor. Results showed a significant inhibition of tumor growth compared to that of untreated controls. More importantly, mean lifespan of tumor bearing animals treated with MPTQ was significantly higher as compared to that of untreated tumor bearing mice suggesting that the treatment affected viability of cancerous cells, but not of normal cells. Consistent with this, we find that administration of MPTQ to normal mice did not cause any major side effects as observed upon hematological and serum profiling. We also found that MPTQ induces cytotoxicity in cancer cell lines, by activating apoptosis both by intrinsic and extrinsic pathways. Thus, MPTQ could be used as a potential cancer therapeutic agent

    MPTQ-mediated cell death is associated with increased phosphorylation of p53 at Ser15.

    No full text
    <p>A) Western blot analysis of phospho-p53 (Ser15), p53 and GAPDH. Neuro 2a cells were either treated with 30 µM of MPTQ or DMSO alone for 24 hours. Three independent isolates were obtained and 60 µg of total proteins were size fractionated in 12% SDS-PAGE and western blotted either with anti-phospho-p53 (ser15) or with anti-p53 antibody. The blots were stripped and hybridized with anti-GAPDH antibody to normalize any loading difference. B) Immunocytochemistry of phopho-p53 (Ser15). Images represent three independent experiments C) Nuclear phospho-p53 (Ser15) intensity was measured as described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0066430#pone-0066430-g006" target="_blank">figure 6</a>. Histograms represent mean integrated nuclear phopho-p53 (Ser15) intensity±SD of three independent experiments. p value calculated by Student’s t-test is displayed which indicates significant increased phosphorylation of p53 at Ser15 in MPTQ treated neuroblastoma cells.</p

    Working model of MPTQ-mediated apoptosis in neuro 2a neuroblastoma cells.

    No full text
    <p>MPTQ activates ATM (an indicator of DNA double strand breaks) and p53. MPTQ treatment also upregulates Bax protein level which activates caspase-dependent intrinsic apoptosis pathway by activating caspase-9 followed by caspase-3 and -7 which in turn inactivates PARP. Caspase-independent intrinsic apoptosis pathway was also activated by nuclear translocation of AIF. MOMP = mitochondrial outer membrane permeabilization.</p

    MPTQ-mediated cell death is associated with activation of caspases of intrinsic apoptosis pathway but not of extrinsic pathway.

    No full text
    <p>A) Neuro 2a cells were cultured and treated with 30 µM of MPTQ for 24 hours and lysates were prepared. 60 µg of total proteins were resolved in 12% SDS-PAGE and immunoblotted with anti-caspase-8 or anti-caspase-2 or anti-caspase-9 or anti-caspase-3 or anti-caspase-7 antibody. Blots were stripped and immunoblotted with anti-GAPDH antibody. The results clearly indicate the activation of caspase-9, -3 and-7 but not caspase-8 and -2 in MPTQ treated cells. B) Immunocytochemistry of caspase-3 protein was performed as described earlier. Increased caspase-3 level was observed in the nucleus of MPTQ treated neuro 2a cells but not in control cells. C) Nuclear level of caspase-3 immunosignal was obtained using multi-cell scoring module and mean of three random images of two independent experiments were displayed as histograms. Error bar indicates standard deviation. D) Western blot analysis of cleaved caspase-3 level in cytosolic and nuclear fraction of MPTQ treated or untreated neuro 2a cells. Blots were also immunoblotted with anti-GAPDH and anti-histone H3 antibodies for normalization. E) Densitometric analysis of procaspase-3 and cleaved caspase-3 bands were made from cytosolic as well as from nuclear fractions. Cleaved caspase-3 to procaspase-3 ratio was obtained. Mean and standard deviation from three independent isolates were obtained and plotted as histograms. p value was calculated by Student’s t-test and is displayed which indicates significant increased mobilization of cleaved caspase-3 from cytoplasm to nucleus in MPTQ treated neuro 2a cells.</p
    corecore