4 research outputs found

    Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels

    Get PDF
    Cancer and stromal cells actively exert physical forces (solid stress) to compress tumour blood vessels, thus reducing vascular perfusion. Tumour interstitial matrix also contributes to solid stress, with hyaluronan implicated as the primary matrix molecule responsible for vessel compression because of its swelling behaviour. Here we show, unexpectedly, that hyaluronan compresses vessels only in collagen-rich tumours, suggesting that collagen and hyaluronan together are critical targets for decompressing tumour vessels. We demonstrate that the angiotensin inhibitor losartan reduces stromal collagen and hyaluronan production, associated with decreased expression of profibrotic signals TGF-β1, CCN2 and ET-1, downstream of angiotensin-II-receptor-1 inhibition. Consequently, losartan reduces solid stress in tumours resulting in increased vascular perfusion. Through this physical mechanism, losartan improves drug and oxygen delivery to tumours, thereby potentiating chemotherapy and reducing hypoxia in breast and pancreatic cancer models. Thus, angiotensin inhibitors—inexpensive drugs with decades of safe use—could be rapidly repurposed as cancer therapeutics.National Cancer Institute (U.S.) (Grant P01-CA080124)National Cancer Institute (U.S.) (Grant R01-CA126642)National Cancer Institute (U.S.) (Grant R01-CA085140)National Cancer Institute (U.S.) (Grant R01-CA115767)National Cancer Institute (U.S.) (Grant R01-CA098706)United States. Dept. of Defense. Breast Cancer Research Program (Innovator Award W81XWH-10-1-0016)Lustgarten Foundation (Dana-Farber Cancer Institute/David H. Koch Institute for Integrative Cancer Research at MIT Bridge Project Grant

    Blocking CXCR4 alleviates desmoplasia, increases T-lymphocyte infiltration, and improves immunotherapy in metastatic breast cancer

    No full text
    Metastatic breast cancers (mBCs) are largely resistant to immune checkpoint blockade, but the mechanisms remain unclear. Primary breast cancers are characterized by a dense fibrotic stroma, which is considered immunosuppressive in multiple malignancies, but the stromal composition of breast cancer metastases and its role in immunosuppression are largely unknown. Here we show that liver and lung metastases of human breast cancers tend to be highly fibrotic, and unlike primary breast tumors, they exclude cytotoxic T lymphocytes (CTLs). Unbiased analysis of the The Cancer Genome Atlas database of human breast tumors revealed a set of genes that are associated with stromal T-lymphocyte exclusion. Among these, we focused on CXCL12 as a relevant target based on its known roles in immunosuppression in other cancer types. We found that the CXCL12 receptor CXCR4 is highly expressed in both human primary tumors and metastases. To gain insight into the role of the CXCL12/CXCR4 axis, we inhibited CXCR4 signaling pharmacologically and found that plerixafor decreases fibrosis, alleviates solid stress, decompresses blood vessels, increases CTL infiltration, and decreases immunosuppression in murine mBC models. By deleting CXCR4 in αSMA+ cells, we confirmed that these immunosuppressive effects are dependent on CXCR4 signaling in αSMA+ cells, which include cancer-associated fibroblasts as well as other cells such as pericytes. Accordingly, CXCR4 inhibition more than doubles the response to immune checkpoint blockers in mice bearing mBCs. These findings demonstrate that CXCL12/CXCR4- mediated desmoplasia in mBC promotes immunosuppression and is a potential target for overcoming therapeutic resistance to immune checkpoint blockade in mBC patients. Keywords: tumor microenvironment; mnetastatic breast cancer; immune checkpoint blockade; tumor desmoplasia; carcinoma-associated fibroblastsUnited States. National Cancer Institute (Grant P01-CA080124)United States. National Cancer Institute (Grant R01-CA098706)United States. National Cancer Institute (Grant R01-CA208205)United States. National Cancer Institute (Grant U01- CA224348)National Institutes of Health (U.S.) (Ruth L. Kirschstein National Research Service Award Postdoctoral Fellowship F32- CA073479)S. Leslie Misrock Frontier Research Fund for Cancer Nanotechnology (Misrock Fellowship
    corecore