3 research outputs found

    A scoping review of lymphatic filariasis in Zambia

    No full text
    We are conducting a scoping review of the research on lymphatic filariasis in Zambia

    The leishmaniases in Kenya: A scoping review.

    No full text
    BackgroundThe leishmaniases are a group of four vector-borne neglected tropical diseases caused by 20 species of protozoan parasites of the genus Leishmania and transmitted through a bite of infected female phlebotomine sandflies. Endemic in over 100 countries, the four types of leishmaniasis-visceral leishmaniasis (VL) (known as kala-azar), cutaneous leishmaniasis (CL), mucocutaneous leishmaniasis (MCL), and post-kala-azar dermal leishmaniasis (PKDL)-put 1.6 billion people at risk. In Kenya, the extent of leishmaniasis research has not yet been systematically described. This knowledge is instrumental in identifying existing research gaps and designing appropriate interventions for diagnosis, treatment, and elimination.Methodology/principal findingsThis study used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology to determine the state of leishmaniases research in Kenya and identify research gaps. We searched seven online databases to identify articles published until January 2022 covering VL, CL, MCL, and/or PKDL in Kenya. A total of 7,486 articles were found, of which 479 underwent full-text screening, and 269 met our eligibility criteria. Most articles covered VL only (n = 141, 52%), were published between 1980 and 1994 (n = 108, 39%), and focused on the theme of "vectors" (n = 92, 34%). The most prevalent study types were "epidemiological research" (n = 88, 33%) tied with "clinical research" (n = 88, 33%), then "basic science research" (n = 49, 18%) and "secondary research" (n = 44, 16%).Conclusion/significanceWhile some studies still provide useful guidance today, most leishmaniasis research in Kenya needs to be updated and focused on prevention, co-infections, health systems/policy, and general topics, as these themes combined comprised less than 4% of published articles. Our findings also indicate minimal research on MCL (n = 1, <1%) and PKDL (n = 2, 1%). We urge researchers to renew and expand their focus on these neglected diseases in Kenya

    S100A8/A9 predicts response to PIM kinase and PD-1/PD-L1 inhibition in triple-negative breast cancer mouse models

    No full text
    Abstract Background Understanding why some triple-negative breast cancer (TNBC) patients respond poorly to existing therapies while others respond well remains a challenge. This study aims to understand the potential underlying mechanisms distinguishing early-stage TNBC tumors that respond to clinical intervention from non-responders, as well as to identify clinically viable therapeutic strategies, specifically for TNBC patients who may not benefit from existing therapies. Methods We conducted retrospective bioinformatics analysis of historical gene expression datasets to identify a group of genes whose expression levels in early-stage tumors predict poor clinical outcomes in TNBC. In vitro small-molecule screening, genetic manipulation, and drug treatment in syngeneic mouse models of TNBC were utilized to investigate potential therapeutic strategies and elucidate mechanisms of drug action. Results Our bioinformatics analysis reveals a robust association between increased expression of immunosuppressive cytokine S100A8/A9 in early-stage tumors and subsequent disease progression in TNBC. A targeted small-molecule screen identifies PIM kinase inhibitors as capable of decreasing S100A8/A9 expression in multiple cell types, including TNBC and immunosuppressive myeloid cells. Combining PIM inhibition and immune checkpoint blockade induces significant antitumor responses, especially in otherwise resistant S100A8/A9-high PD-1/PD-L1-positive tumors. Notably, serum S100A8/A9 levels mirror those of tumor S100A8/A9 in a syngeneic mouse model of TNBC. Conclusions Our data propose S100A8/A9 as a potential predictive and pharmacodynamic biomarker in clinical trials evaluating combination therapy targeting PIM and immune checkpoints in TNBC. This work encourages the development of S100A8/A9-based liquid biopsy tests for treatment guidance
    corecore