20 research outputs found

    COVID-19 shines a light on health inequities in communities of color: a youth-driven photovoice inquiry

    Get PDF
    This manuscript reports on a youth-driven health assessment engaging youth of color in identifying community health priorities during the coronavirus disease 2019 (COVID-19) pandemic. Photovoice, a participatory visual ethnographic health assessment strategy, was used to explore the question: What does health or healthiness mean to you and/or your community? Youth captured images that represented their priorities. The photos were discussed using the SHOWed framework and analyzed thematically. Four themes related to community health were identified. Additionally, youth captured their narrative of COVID-19 as "a revealing force that highlights systemic inequities, driving individuals and communities to both cultivate their resilience and take healthcare into their own hands in response to government and policy level failures." Youth are acutely aware of the historical and structural inequities that create multi-level barriers to healthcare access. Health inequities existed long before the pandemic, but the current crisis requires us to examine ways to transform the healthcare landscape moving forward.UL1 TR001430 - NCATS NIH HHSPublished versio

    Hepatopathy following consumption of a commercially available blue-green algae dietary supplement in a dog

    Get PDF
    BACKGROUND: Dietary supplement use in both human and animals to augment overall health continues to increase and represents a potential health risk due to the lack of safety regulations imposed on the manufacturers. Because there are no requirements for demonstrating safety and efficacy prior to marketing, dietary supplements may contain potentially toxic contaminants such as hepatotoxic microcystins produced by several species of blue-green algae. CASE PRESENTATION: An 11-year-old female spayed 8.95 kg Pug dog was initially presented for poor appetite, lethargy polyuria, polydipsia, and an inability to get comfortable. Markedly increased liver enzyme activities were detected with no corresponding abnormalities evident on abdominal ultrasound. A few days later the liver enzyme activities were persistently increased and the dog was coagulopathic indicating substantial liver dysfunction. The dog was hospitalized for further care consisting of oral S-adenosylmethionine, silybin, vitamin K, and ursodeoxycholic acid, as well as intravenous ampicillin sodium/sulbactam sodium, dolasetron, N-acetylcysteine, metoclopramide, and intravenous fluids. Improvement of the hepatopathy and the dog’s clinical status was noted over the next three days. Assessment of the dog’s diet revealed the use of a commercially available blue-green algae dietary supplement for three-and-a-half weeks prior to hospitalization. The supplement was submitted for toxicology testing and revealed the presence of hepatotoxic microcystins (MCs), MC-LR and MC-LA. Use of the supplement was discontinued and follow-up evaluation over the next few weeks revealed a complete resolution of the hepatopathy. CONCLUSIONS: To the authors’ knowledge, this is the first case report of microcystin intoxication in a dog after using a commercially available blue-green algae dietary supplement. Veterinarians should recognize the potential harm that these supplements may cause and know that with intervention, recovery is possible. In addition, more prudent oversight of dietary supplement use is recommended for our companion animals to prevent adverse events/intoxications

    Debromoaplysiatoxin as the Causative Agent of Dermatitis in a Dog after Exposure to Freshwater in California.

    Get PDF
    Contamination of recreational waters with cyanobacterial toxins continues to increase and presents a risk to animals and humans. Although cases of acute hepato- and neurotoxicoses in dogs following cyanotoxin exposure exist, no reports of skin-related reactions in dogs exist. A 5-year-old female spayed 34 kg Bracco Italiano was initially presented for rapid onset of severe pruritus and urticaria. Marked excoriation and erythema were noted over the chest and neck, while urticaria was noted in the inguinal regions and ventral abdomen. Initial basic dermatology work-up excluded parasitic, fungal, and bacterial organisms. Due to the severity and progression of urticaria, the dog received IV dexamethasone and IM diphenhydramine. Improvement of the urticaria and the dog's clinical status was noted over the next 45 min. Assessment of the dog's environment revealed access to a lake on the property with visible algal bloom. Water from the lake was submitted for toxicology testing and revealed the presence of debromoaplysiatoxin. Access to the lake was discontinued and follow-up evaluation over the next few weeks revealed a complete resolution of the skin irritation. To the authors' knowledge, this is the first case report of debromoaplysiatoxin exposure in a dog after swimming in cyanobacteria-contaminated water. Veterinarians should recognize the potential harm that contaminated waters may cause in terms of dermal, hepatic, and neurological conditions. In addition, more prudent oversight of contaminated recreational waters is recommended for animals and humans to prevent adverse events and intoxications

    Lead Exposure from Backyard Chicken Eggs: A Public Health Risk?

    No full text
    Although the USA has made significant strides in reducing lead exposure, new and emerging sources are raising cause for public concern. Recent reports of finding lead in eggs from chickens raised in urban gardens has highlighted the need to consider the potential health risks of consuming eggs from backyard chickens. Following the detection of 0.33 Î¼g/g lead in the edible portion of eggs submitted for lead analysis from a backyard chicken owner, further investigation was conducted to determine the source and extent of lead exposure in the flock. Several birds, almost two dozen eggs, and environmental samples were submitted to the California Animal Health and Food Safety Laboratory for further testing. Lead was detected in the blood, liver, kidney, and bone at varying concentrations in all birds but was not detected in the muscle tissue. All egg shells contained detectable amounts of lead, while only a little over half of the edible portion of the eggs contained lead. The detected concentrations in the edible portion approached or exceeded the recommended threshold of lead consumption per day that should not be exceeded by young children if a child consumed one average-sized egg. Peeling paint from a wooded structure adjacent to the flock's coop was the likely lead source containing 3,700 Î¼g/g lead. Thus, removal of the chickens from the source and periodic testing of eggs for lead were recommended. This case illustrates the need for consumers and health care workers to be aware of potential sources for lead exposure such as backyard chickens

    Triiodothyronine or Antioxidants Block the Inhibitory Effects of BDE-47 and BDE-49 on Axonal Growth in Rat Hippocampal Neuron-Glia Co-Cultures.

    No full text
    We previously demonstrated that polybrominated diphenyl ethers (PBDEs) inhibit the growth of axons in primary rat hippocampal neurons. Here, we test the hypothesis that PBDE effects on axonal morphogenesis are mediated by thyroid hormone and/or reactive oxygen species (ROS)-dependent mechanisms. Axonal growth and ROS were quantified in primary neuronal-glial co-cultures dissociated from neonatal rat hippocampi exposed to nM concentrations of BDE-47 or BDE-49 in the absence or presence of triiodothyronine (T3; 3-30 nM), N-acetyl-cysteine (NAC; 100 µM), or α-tocopherol (100 µM). Co-exposure to T3 or either antioxidant prevented inhibition of axonal growth in hippocampal cultures exposed to BDE-47 or BDE-49. T3 supplementation in cultures not exposed to PBDEs did not alter axonal growth. T3 did, however, prevent PBDE-induced ROS generation and alterations in mitochondrial metabolism. Collectively, our data indicate that PBDEs inhibit axonal growth via ROS-dependent mechanisms, and that T3 protects axonal growth by inhibiting PBDE-induced ROS. These observations suggest that co-exposure to endocrine disruptors that decrease TH signaling in the brain may increase vulnerability to the adverse effects of developmental PBDE exposure on axonal morphogenesis

    Hepatopathy following consumption of a commercially available blue-green algae dietary supplement in a dog.

    No full text
    BackgroundDietary supplement use in both human and animals to augment overall health continues to increase and represents a potential health risk due to the lack of safety regulations imposed on the manufacturers. Because there are no requirements for demonstrating safety and efficacy prior to marketing, dietary supplements may contain potentially toxic contaminants such as hepatotoxic microcystins produced by several species of blue-green algae.Case presentationAn 11-year-old female spayed 8.95 kg Pug dog was initially presented for poor appetite, lethargy polyuria, polydipsia, and an inability to get comfortable. Markedly increased liver enzyme activities were detected with no corresponding abnormalities evident on abdominal ultrasound. A few days later the liver enzyme activities were persistently increased and the dog was coagulopathic indicating substantial liver dysfunction. The dog was hospitalized for further care consisting of oral S-adenosylmethionine, silybin, vitamin K, and ursodeoxycholic acid, as well as intravenous ampicillin sodium/sulbactam sodium, dolasetron, N-acetylcysteine, metoclopramide, and intravenous fluids. Improvement of the hepatopathy and the dog's clinical status was noted over the next three days. Assessment of the dog's diet revealed the use of a commercially available blue-green algae dietary supplement for three-and-a-half weeks prior to hospitalization. The supplement was submitted for toxicology testing and revealed the presence of hepatotoxic microcystins (MCs), MC-LR and MC-LA. Use of the supplement was discontinued and follow-up evaluation over the next few weeks revealed a complete resolution of the hepatopathy.ConclusionsTo the authors' knowledge, this is the first case report of microcystin intoxication in a dog after using a commercially available blue-green algae dietary supplement. Veterinarians should recognize the potential harm that these supplements may cause and know that with intervention, recovery is possible. In addition, more prudent oversight of dietary supplement use is recommended for our companion animals to prevent adverse events/intoxications

    Lead Exposure from Backyard Chicken Eggs: A Public Health Risk?

    No full text
    Although the USA has made significant strides in reducing lead exposure, new and emerging sources are raising cause for public concern. Recent reports of finding lead in eggs from chickens raised in urban gardens has highlighted the need to consider the potential health risks of consuming eggs from backyard chickens. Following the detection of 0.33 μg/g lead in the edible portion of eggs submitted for lead analysis from a backyard chicken owner, further investigation was conducted to determine the source and extent of lead exposure in the flock. Several birds, almost two dozen eggs, and environmental samples were submitted to the California Animal Health and Food Safety Laboratory for further testing. Lead was detected in the blood, liver, kidney, and bone at varying concentrations in all birds but was not detected in the muscle tissue. All egg shells contained detectable amounts of lead, while only a little over half of the edible portion of the eggs contained lead. The detected concentrations in the edible portion approached or exceeded the recommended threshold of lead consumption per day that should not be exceeded by young children if a child consumed one average-sized egg. Peeling paint from a wooded structure adjacent to the flock’s coop was the likely lead source containing 3,700 μg/g lead. Thus, removal of the chickens from the source and periodic testing of eggs for lead were recommended. This case illustrates the need for consumers and health care workers to be aware of potential sources for lead exposure such as backyard chickens

    BHLH-PAS proteins in cancer

    No full text
    Mammalian basic HLH (helix–loop–helix)–PER–ARNT–SIM (bHLH–PAS) proteins are heterodimeric transcription factors that sense and respond to environmental signals (such as pollutants) or to physiological signals (for example, hypoxia and circadian rhythms) through their two PAS domains. PAS domains form a generic three-dimensional fold, which commonly contains an internal cavity capable of small-molecule binding and outer surfaces adept at protein–protein interactions. These proteins are important in several pro-tumour and antitumour pathways and their activities can be modulated by both natural metabolites and oncometabolites. Recently determined structures and successful small-moleculescreening programmes are now providing new opportunities to discover selective agonists and antagonists directed against this multitasking family of transcription factors.David C. Bersten, Adrienne E. Sullivan, Daniel J. Peet & Murray L. Whitela
    corecore