36 research outputs found
Increased IL-5 and IL-13 cytokine level in ex vivo stimulated whole blood cells from grass pollen allergic donors correlate with seasonal exposure
AbstractThere is a need for simple and physiological assays to characterize the immune status of allergic individuals. Whole blood samples from 15 adult subjects (10 with positive clinical history to grass pollen and 5 with negative clinical history) were obtained before the start (April 2010) and during the middle of the grass pollen season (June 2010). The investigators were blinded to the allergic status of the subjects. A skin prick test (SPT) to grass pollen was carried out at the end of the study. Cytokines (IL-5, IL-13, IL-10 and IFNγ) and activation of T-lymphocytes were determined after ex vivo culture of whole blood cells. IL-5, IL-10 and IL-13 cytokines were significantly elevated in allergic individuals during the middle of the season (p≤0.02) compared to the start. This assay can be a valuable tool in clinical trials especially in pediatric population where limited quantities of blood are available to study immune responses
Dietary supplementation with Bifidobacterium lactis NCC2818 from weaning reduces local immunoglobulin production in lymphoid-associated tissues but increases systemic antibodies in healthy neonates
Weaning is associated with a major shift in the microbial community of the intestine, and this instability may make it more acquiescent than the adult microbiota to long-term changes. Modulation achieved through dietary interventions may have potentially beneficial effects on the developing immune system, which is driven primarily by the microbiota. The specific aim of the present study was to determine whether immune development could be modified by dietary supplementation with the human probiotic Bifidobacterium lactis NCC2818 in a tractable model of weaning in infants. Piglets were reared by their mothers before being weaned onto a solid diet supplemented with B. lactis NCC2818, while sibling controls did not receive supplementation. Probiotic supplementation resulted in a reduction in IgA (P0·05). Probiotic-supplemented pigs had more mast cells than unsupplemented littermates (P<0·0001), although numbers in both groups were low. In addition, the supplemented piglets made stronger serum IgG responses to fed and injected antigens (P<0·05). The present findings are consistent with B. lactis NCC2818 reducing intestinal permeability induced by weaning, and suggest that the piglet is a valuable intermediate between rodent models and human infants. The results also strongly suggest that measures of the effect of probiotic supplementation on the immune system need to be interpreted carefully as proxy measures of health benefit. However, they are useful in developing an understanding of the mechanism of action of probiotic strains, an important factor in predicting favourable health outcomes of nutritional interventio
Analysis and Functional Consequences of Increased Fab-Sialylation of Intravenous Immunoglobulin (IVIG) after Lectin Fractionation
It has been proposed that the anti-inflammatory effects of intravenous immunoglobulin (IVIG) might be due to the small fraction of Fc-sialylated IgG. In this study we biochemically and functionally characterized sialic acid-enriched IgG obtained by Sambucus nigra agglutinin (SNA) lectin fractionation. Two main IgG fractions isolated by elution with lactose (E1) or acidified lactose (E2) were analyzed for total IgG, F(ab’)2 and Fc-specific sialic acid content, their pattern of specific antibodies and anti-inflammatory potential in a human in vitro inflammation system based on LPS- or PHA-stimulated whole blood. HPLC and LC-MS testing revealed an increase of sialylated IgG in E1 and more substantially in the E2 fraction. Significantly, the increased amount of sialic acid residues was primarily found in the Fab region whereas only a minor increase was observed in the Fc region. This indicates preferential binding of the Fab sialic acid to SNA. ELISA analyses of a representative range of pathogen and auto-antigens indicated a skewed antibody pattern of the sialylated IVIG fractions. Finally, the E2 fraction exerted a more profound anti-inflammatory effect compared to E1 or IVIG, evidenced by reduced CD54 expression on monocytes and reduced secretion of MCP-1 (CCL2); again these effects were Fab- but not Fc-dependent. Our results show that SNA fractionation of IVIG yields a minor fraction (approx. 10%) of highly sialylated IgG, wherein the sialic acid is mainly found in the Fab region. The tested anti-inflammatory activity was associated with Fab not Fc sialylation
Recommended from our members
Dietary supplementation with Bifidobacterium lactis NCC2818 from weaning reduces local immunoglobulin production in lymphoid-associated tissues but increases systemic antibodies in healthy neonates
Weaning is associated with a major shift in the microbial community of the intestine, and this instability may make it more acquiescent than
the adult microbiota to long-term changes. Modulation achieved through dietary interventions may have potentially beneficial effects on
the developing immune system, which is driven primarily by the microbiota. The specific aim of the present study was to determine
whether immune development could be modified by dietary supplementation with the human probiotic Bifidobacterium lactis
NCC2818 in a tractable model of weaning in infants. Piglets were reared by their mothers before being weaned onto a solid diet
supplemented with B. lactis NCC2818, while sibling controls did not receive supplementation. Probiotic supplementation resulted in
a reduction in IgA (P,0·0005) and IgM (P,0·009) production by mucosal tissues but had no effect on IgG production (P.0·05). Probiotic-
supplemented pigs had more mast cells than unsupplemented littermates (P,0·0001), although numbers in both groups were low. In
addition, the supplemented piglets made stronger serum IgG responses to fed and injected antigens (P,0·05). The present findings are
consistent with B. lactis NCC2818 reducing intestinal permeability induced by weaning, and suggest that the piglet is a valuable
intermediate between rodent models and human infants. The results also strongly suggest that measures of the effect of probiotic supplementation
on the immune system need to be interpreted carefully as proxy measures of health benefit. However, they are useful in
developing an understanding of the mechanism of action of probiotic strains, an important factor in predicting favourable health outcomes
of nutritional intervention
Using the K/BxN mouse model of endogenous, chronic, rheumatoid arthritis for the evaluation of potential immunoglobulin-based therapeutic agents, including IVIg and Fc-μTP-L309C, a recombinant IgG1 Fc hexamer
Abstract
Background
High-dose intravenous immunoglobulin (IVIg), and more recently, subcutaneously-delivered Ig (SCIg), are used to treat a variety of autoimmune diseases; however, there are challenges associated with product production, availability, access and efficacy. These challenges have provided incentives to develop a human recombinant Fc as a more potent alternative to IVIg and SCIg for the treatment of autoimmune diseases. Recently, a recombinant human IgG1 Fc hexamer (Fc-μTP-L309C) was shown to be more efficacious than IVIg in a variety of autoimmune mouse models. We have now examined its efficacy compared to IVIg and SCIg in the K/BxN mouse model of endogenous, chronic rheumatoid arthritis (RA).
Result
Using the serum-transfer K/BxN model and the endogenous autoimmune model, amelioration of the arthritis was achieved. Effective treatment required high and frequent doses of IVIg, SCIg and Fc-μTP-L309C. However, Fc-μTP-L309C was efficacious at 10-fold lower doses that IVIg/SCIg. Also, arthritis could be prevented when Fc-μTP-L309C was given prior to onset of the arthritis in both the endogenous model and in the serum transfer model.
Conclusions
Our results show that Fc-μTP-L309C is a powerful treatment for the prevention and amelioration of severe, chronic arthritis in a true autoimmune mouse model of RA. Thus, the K/BxN endogenous arthritis model should be useful for testing potential therapeutics for RA. Our findings provide rationale for further examination of the treatment efficacy of immunoglobulin-based therapeutics in rheumatoid arthritis
Antibody responses induced by long-term vaccination with an octovalent conjugate Pseudomonas aeruginosa vaccine in children with cystic fibrosis
We assessed the serological responses over 10 years to repeated immunization of cystic fibrosis (CF) patients with an O-polysaccharide (OPS)-toxin A conjugate vaccine against Pseudomonas aeruginosa. A retrospective analysis was performed with sera from 25 vaccinated and 25 unvaccinated children treated at the same CF centre and matched for clinical management, age and gender. Yearly immunization led to sustained elevations of serum immunoglobulin G (IgG) antibody levels to all vaccine components. Eighteen unvaccinated patients but only eight vaccinated ones developed chronic pseudomonal lung infections. Infection rapidly caused further marked elevations of polysaccharide- but not toxin A-specific serum IgG in both immunized and nonimmunized patients, indicating that protection did not depend on the quantity of IgG present. However, qualitative analyses revealed that the protective capacity of specific serum IgG antibodies was linked to high affinity and to specificity for OPS serotypes rather than for lipopolysaccharide core epitopes
Pharmacokinetics and safety profile of the human anti-Pseudomonas aeruginosa serotype O11 immunoglobulin M monoclonal antibody KBPA-101 in healthy volunteers
KBPA-101 is a human monoclonal antibody of the immunoglobulin M isotype, which is directed against the O-polysaccharide moiety of Pseudomonas aeruginosa serotype O11. This double-blind, dose escalation study evaluated the safety and pharmacokinetics of KBPA-101 in 32 healthy volunteers aged 19 to 46 years. Each subject received a single intravenous infusion of KBPA-101 at a dose of 0.1, 0.4, 1.2, or 4 mg/kg of body weight or placebo infused over 2 h. Plasma samples for pharmacokinetic assessments were taken before infusion as well as 0.25, 0.5, 1, 2, 2.5, 4, 6, 8, 12, 24, 36, and 48 h and 4, 7, 10, and 14 days after start of dosing. Plasma concentrations of KBPA-101 were detected with mean maximum concentrations of drug in plasma of 1,877, 7,571, 24,923, and 83,197 ng/ml following doses of 0.1, 0.4, 1.2, and 4.0 mg/kg body weight, respectively. The mean elimination half-life was between 70 and 95 h. The mean volume of distribution was between 4.76 and 5.47 liters. Clearance ranged between 0.039 and 0.120 liters/h. At the highest dose of 4.0 mg/kg, plasma KBPA-101 levels were greater than 5,000 ng/ml for 14 days. KBPA-101 exhibited linear kinetics across all doses. No anti-KBPA-101 antibodies were detected after dosing in any subject. Overall, the human monoclonal antibody KBPA-101 was well tolerated over the entire dose range in healthy volunteers, and no serious adverse events have been reported