284 research outputs found

    The costs and benefits of secured creditor control in bankruptcy: Evidence from the UK

    Get PDF
    Recent theoretical literature has debated the desirability of permitting debtors to contract with lenders over control rights in bankruptcy. Proponents point to the monitoring benefits brought from concentrating control rights in the hands of a single lender. Detractors point to the costs imposed on other creditors by a senior claimant's inadequate incentives to maximise net recoveries. The UK provides the setting for a natural experiment regarding these theories. Until recently, UK bankruptcy law permitted firms to give complete ex post control to secured creditors, through a procedure known as Receivership. Receivership was replaced in 2003 by a new procedure, Administration, which was intended to introduce greater accountability to unsecured creditors to the governance of bankrupt firms, through a combination of voting rights and fiduciary duties. We present empirical findings from a hand-coded sample of 348 bankruptcies from both before and after the change in the law, supplemented with qualitative interview data. We find robust evidence that whilst gross realisations have increased following the change in the law, these have tended to be eaten up by concomitantly increased bankruptcy costs. The net result has been that creditor recoveries have remained unchanged. This implies that dispersed and concentrated creditor governance in bankruptcy may be functionally equivalent.Bankruptcy costs; Contract bankruptcy; Secured creditor control, UK, receivership, administration

    Modulated extrusion for textured 3D printing

    Get PDF
    This research utilises a Fused Deposition Modelling 3D Printer to investigate the aesthetics of 3D printing and it's broader applications. The presented research re-evaluates the 3D printer as a tool to manipulate materials, as opposed to a machine that discretely reproduces digital models at a fine resolution. The research questions the utility of automation, and attempts to find a level that permits materially expressive modes of fabrication. The exploration of aesthetics has uncovered a variety of unexpected textures and interesting material properties that may have wider use. For instance, rigid plastic has been extruded and manipulated finer than the extrusion nozzle diameter, which confers flexibility and fabric like qualities to the printed object. The discovered techniques for 3D printed aesthetics are reproducibly reliable and can be incorporated back into orthodox digital-model driven fabrication

    Strategies towards Cost Reduction in the Manufacture of Printable Perovskite Solar Modules

    Get PDF
    Among different perovskite solar cell architectures, the carbon-based perovskite solar cell (C-PSC) is a promising candidate for upscaling and commercialization related to low-cost components and simple manufacturing methods. For upscaling a PV technology, three parameters must be considered, corresponding to efficiency, stability, and cost. While the efficiency and lifetime of perovskite technology are the focus of many research groups, the cost parameter is less studied. This work aims to provide information on the manufacturing cost of C-PSC based on experimental data in order to give the readers a panoramic overview of parameters influencing a fabrication process. To analyze the commercialization viability of this technology, we estimated the cost of raw materials and the manufacturing process for sub-modules using two different methods: registration and scribing. The fabrication cost of a sub-module fabricated using the scribing method with 7.9% efficiency was approximately 44% less than that of a device with 6.8% efficiency prepared using registration. We demonstrated that this is due to both the design parameters and performance. In addition, we showed a 51% cost reduction for registration devices by appropriate choice of solar cell components, fabrication steps, and equipment based on the existing infrastructures for the manufacturing of large-scale devices

    Interactivity:the missing link between virtual reality technology and drug discovery pipelines

    Get PDF
    The potential of virtual reality (VR) to contribute to drug design and development has been recognised for many years. Hardware and software developments now mean that this potential is beginning to be realised, and VR methods are being actively used in this sphere. A recent advance is to use VR not only to visualise and interact with molecular structures, but also to interact with molecular dynamics simulations of 'on the fly' (interactive molecular dynamics in VR, IMD-VR), which is useful not only for flexible docking but also to examine binding processes and conformational changes. iMD-VR has been shown to be useful for creating complexes of ligands bound to target proteins, e.g., recently applied to peptide inhibitors of the SARS-CoV-2 main protease. In this review, we use the term 'interactive VR' to refer to software where interactivity is an inherent part of the user VR experience e.g., in making structural modifications or interacting with a physically rigorous molecular dynamics (MD) simulation, as opposed to simply using VR controllers to rotate and translate the molecule for enhanced visualisation. Here, we describe these methods and their application to problems relevant to drug discovery, highlighting the possibilities that they offer in this arena. We suggest that the ease of viewing and manipulating molecular structures and dynamics, and the ability to modify structures on the fly (e.g., adding or deleting atoms) makes modern interactive VR a valuable tool to add to the armoury of drug development methods.Comment: 19 pages, 3 figure

    Interactive molecular dynamics in virtual reality for accurate flexible protein-ligand docking

    Get PDF
    Simulating drug binding and unbinding is a challenge, as the rugged energy landscapes that separate bound and unbound states require extensive sampling that consumes significant computational resources. Here, we describe the use of interactive molecular dynamics in virtual reality (iMD-VR) as an accurate low-cost strategy for flexible protein-ligand docking. We outline an experimental protocol which enables expert iMD-VR users to guide ligands into and out of the binding pockets of trypsin, neuraminidase, and HIV-1 protease, and recreate their respective crystallographic protein-ligand binding poses within 5 - 10 minutes. Following a brief training phase, our studies shown that iMD-VR novices were able to generate unbinding and rebinding pathways on similar timescales as iMD-VR experts, with the majority able to recover binding poses within 2.15 Angstrom RMSD of the crystallographic binding pose. These results indicate that iMD-VR affords sufficient control for users to carry out the detailed atomic manipulations required to dock flexible ligands into dynamic enzyme active sites and recover crystallographic poses, offering an interesting new approach for simulating drug docking and generating binding hypotheses.Comment: PLOS ON
    • …
    corecore