66 research outputs found

    Chronic Invasive Aspergillosis caused by Aspergillus viridinutans

    Get PDF
    Aspergillus viridinutans, a mold phenotypically resembling A. fumigatus, was identified by gene sequence analyses from 2 patients. Disease was distinct from typical aspergillosis, being chronic and spreading in a contiguous manner across anatomical planes. We emphasize the recognition of fumigati-mimetic molds as agents of chronic or refractory aspergillosis

    A Novel Bacterium Associated with Lymphadenitis in a Patient with Chronic Granulomatous Disease

    Get PDF
    Chronic granulomatous disease (CGD) is a rare inherited disease of the phagocyte NADPH oxidase system causing defective production of toxic oxygen metabolites, impaired bacterial and fungal killing, and recurrent life-threatening infections. We identified a novel gram-negative rod in excised lymph nodes from a patient with CGD. Gram-negative rods grew on charcoal-yeast extract, but conventional tests could not identify it. The best 50 matches of the 16S rRNA (using BLAST) were all members of the family Acetobacteraceae, with the closest match being Gluconobacter sacchari. Patient serum showed specific band recognition in whole lysate immunoblot. We used mouse models of CGD to determine whether this organism was a genuine CGD pathogen. Intraperitoneal injection of gp91(phox) (−/−) (X-linked) and p47 (phox −/−) (autosomal recessive) mice with this bacterium led to larger burdens of organism recovered from knockout compared with wild-type mice. Knockout mouse lymph nodes had histopathology that was similar to that seen in our patient. We recovered organisms with 16S rRNA sequence identical to the patient's original isolate from the infected mice. We identified a novel gram-negative rod from a patient with CGD. To confirm its pathogenicity, we demonstrated specific immune reaction by high titer antibody, showed that it was able to cause similar disease when introduced into CGD, but not wild-type mice, and we recovered the same organism from pathologic lesions in these mice. Therefore, we have fulfilled Koch's postulates for a new pathogen. This is the first reported case of invasive human disease caused by any of the Acetobacteraceae. Polyphasic taxonomic analysis shows this organism to be a new genus and species for which we propose the name Granulobacter bethesdensis

    Viability and Burden of Leishmania in Extralesional Sites during Human Dermal Leishmaniasis

    Get PDF
    Understanding of the dynamics and distribution of Leishmania in the human host is fundamental to the targeting of control measures and their evaluation. Amplification of parasite gene sequences in clinical samples from cutaneous leishmaniasis patients has provided evidence of Leishmania in blood, other tissues and sites distinct from the lesion and of persistence of infection after clinical resolution of disease. However, there is uncertainty about the interpretation of the presence of Leishmania DNA as indicative of viable parasites. Because RNA is short-lived and labile, its presence provides an indicator of viability. We amplified Leishmania 7SLRNA, a molecule involved in intracellular protein translocation, to establish viability and estimate parasite load in blood monocytes, tonsil swab samples, and tissue fluid from healthy skin of patients with dermal leishmaniasis. Results showed that during active dermal leishmaniasis, viable Leishmania are present in blood monocytes, tonsils and normal skin in quantities similar to that in lesions, demonstrating widespread dissemination of infection and subclinical involvement of tissues beyond the lesion site. Leishmania 7SLRNA will be useful in deciphering the role of human infection in transmission

    Failure to Recognize Nontuberculous Mycobacteria Leads to Misdiagnosis of Chronic Pulmonary Tuberculosis

    Get PDF
    BACKGROUND: Nontuberculous mycobacterial (NTM) infections cause morbidity worldwide. They are difficult to diagnose in resource-limited regions, and most patients receive empiric treatment for tuberculosis (TB). Our objective here is to evaluate the potential impact of NTM diseases among patients treated presumptively for tuberculosis in Mali. METHODS: We re-evaluated sputum specimens among patients newly diagnosed with TB (naïve) and those previously treated for TB disease (chronic cases). Sputum microscopy, culture and Mycobacterium tuberculosis drug susceptibility testing were performed. Identification of strains was performed using molecular probes or sequencing of secA1 and/or 16S rRNA genes. RESULTS: Of 142 patients enrolled, 61 (43%) were clinically classified as chronic cases and 17 (12%) were infected with NTM. Eleven of the 142 (8%) patients had NTM disease alone (8 M. avium, 2 M. simiae and 1 M. palustre). All these 11 were from the chronic TB group, comprising 11/61 (18%) of that group and all were identified as candidates for second line treatment. The remaining 6/17 (35.30%) NTM infected patients had coinfection with M. tuberculosis and all 6 were from the TB treatment naïve group. These 6 were candidates for the standard first line treatment regimen of TB. M. avium was identified in 11 of the 142 (8%) patients, only 3/11 (27.27%) of whom were HIV positive. CONCLUSIONS: NTM infections should be considered a cause of morbidity in TB endemic environments especially when managing chronic TB cases to limit morbidity and provide appropriate treatment

    Human Dectin-1 Deficiency Impairs Macrophage-Mediated Defense Against Phaeohyphomycosis

    Get PDF
    Subcutaneous phaeohyphomycosis typically affects immunocompetent individuals following traumatic inoculation. Severe or disseminated infection can occur in CARD9 deficiency or after transplantation, but the mechanisms protecting against phaeohyphomycosis remain unclear. We evaluated a patient with progressive, refractory Corynespora cassiicola phaeohyphomycosis and found that he carried biallelic deleterious mutations in CLEC7A encoding the CARD9-coupled, β-glucan-binding receptor, Dectin-1. The patient\u27s PBMCs failed to produce TNF-α and IL-1β in response to β-glucan and/or C. cassiicola. To confirm the cellular and molecular requirements for immunity against C. cassiicola, we developed a mouse model of this infection. Mouse macrophages required Dectin-1 and CARD9 for IL-1β and TNF-α production, which enhanced fungal killing in an interdependent manner. Deficiency of either Dectin-1 or CARD9 was associated with more severe fungal disease, recapitulating the human observation. Because these data implicated impaired Dectin-1 responses in susceptibility to phaeohyphomycosis, we evaluated 17 additional unrelated patients with severe forms of the infection. We found that 12 out of 17 carried deleterious CLEC7A mutations associated with an altered Dectin-1 extracellular C-terminal domain and impaired Dectin-1-dependent cytokine production. Thus, we show that Dectin-1 and CARD9 promote protective TNF-α- and IL-1β-mediated macrophage defense against C. cassiicola. More broadly, we demonstrate that human Dectin-1 deficiency may contribute to susceptibility to severe phaeohyphomycosis by certain dematiaceous fungi

    Analysis of secA1 Gene Sequences for Identification of Nocardia Species

    No full text
    Molecular methodologies, especially 16S rRNA gene sequence analysis, have allowed the recognition of many new species of Nocardia and to date have been the most precise methods for identifying isolates reliably to the species level. We describe here a novel method for identifying Nocardia isolates by using sequence analysis of a portion of the secA1 gene. A region of the secA1 gene of 30 type or reference strains of Nocardia species was amplified using secA1-specific primers. Sequence analysis of 468 bp allowed clear differentiation of all species, with a range of interspecies similarity of 85.0% to 98.7%. Corresponding 16S rRNA gene sequences of a 1,285-bp region for the same isolates showed a range of interspecies similarity of 94.4 to 99.8%. In addition to the type and reference strains, a 468-bp fragment of the secA1 gene was sequenced from 40 clinical isolates of 12 Nocardia species previously identified by 16S rRNA gene sequence analysis. The secA1 gene sequences of most isolates showed >99.0% similarity to the secA1 sequences of the type or reference strain to which their identification corresponded, with a range of 95.3 to 100%. Comparison of the deduced 156 amino acid sequences of the SecA1 proteins of the clinical isolates showed between zero and two amino acid residue differences compared to that of the corresponding type or reference strain. Sequencing of the secA1 gene, and using deduced amino acid sequences of the SecA1 protein, may provide a more discriminative and precise method for the identification of Nocardia isolates than 16S rRNA gene sequencing

    Evaluation of the Integrated Database Network System (IDNS) SmartGene Software for Analysis of 16S rRNA Gene Sequences for Identification of Nocardia Species▿

    No full text
    16S rRNA gene sequences of 102 Nocardia isolates were analyzed using the Integrated Database Network System (IDNS) SmartGene centroid database. A total of 76% of the isolates were correctly identified. Discordant identifications were due to inadequate centroid length (3 species), inaccurate or insufficient entries in the public databases (5 species), and heterogeneous sequences among members of a species (1 species)

    Penicillium citrinum: Opportunistic pathogen or idle bystander? A case analysis with demonstration of galactomannan cross-reactivity

    No full text
    We present a case of an immunocompromised woman with fever, pulmonary infiltrates and multiple bronchoalveolar lavage (BAL) cultures positive for Penicillium citrinum with a concomitant high BAL galactomannan level. We report the results of Aspergillus galactomannan testing performed on culture supernatants from her P. citrinum strain that confirmed the suspected cross-reactivity. Finally, we discuss the clinical significance and antifungal susceptibility of P. citrinum in our case and review the literature

    Molecular Epidemiological Analysis of the Changing Nature of a Meningococcal Outbreak following a Vaccination Campaign

    No full text
    A serogroup C meningococcal outbreak that occurred in an Israeli Arab village led to a massive vaccination campaign. During the subsequent 18 months, new cases of type B Neisseria meningitidis infection were revealed. To investigate the influence of vaccination on bacteriological epidemiology, bacteria were isolated from individuals at the outbreak location, patients with several additional other sporadic cases, and patients involoved in another outbreak. Haploid bacterial genomic DNA was mixed with a consensus PCR product to form a heteroduplex state that enabled multilocus sequence typing (MLST) to be combined with denaturing high-performance liquid chromatography (DHPLC) for a novel high-throughput molecular typing method called MLST-DHPLC. A 100% correlation was found to exist between the sequencing by MLST alone and the MLST-DHPLC method. Independent molecular typing by repetitive extragenic palindromic PCR discriminated the neisserial clones as well as the MLST-DHPLC method did. The occurrence of type B N. meningitidis in the postvaccination period might be attributed to the selection pressure applied to the bacteria by vaccination, suggesting a possible unwarranted outcome of vaccination with the quadrivalent vaccine for control of a serogroup C meningococcal outbreak. This is the first time that DHPLC has been applied to the genotyping of bacteria, and it proved to be more efficient than MLST alone
    corecore