24 research outputs found

    PCSK6 and Survival in Idiopathic Pulmonary Fibrosis

    Get PDF
    Rationale: Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by limited treatment options and high mortality. A better understanding of the molecular drivers of IPF progression is needed. Objectives: To identify and validate molecular determinants of IPF survival. Methods: A staged genome-wide association study was performed using paired genomic and survival data. Stage I cases were drawn from centers across the United States and Europe and stage II cases from Vanderbilt University. Cox proportional hazards regression was used to identify gene variants associated with differential transplantation-free survival (TFS). Stage I variants with nominal significance (P < 5 x 10(-5)) were advanced for stage II testing and meta-analyzed to identify those reaching genome-wide significance (P < 5 x 10(-8)). Downstream analyses were performed for genes and proteins associated with variants reaching genome-wide significance. Measurements and Main Results: After quality controls, 1,481 stage I cases and 397 stage II cases were included in the analysis. After filtering, 9,075,629 variants were tested in stage I, with 158 meeting advancement criteria. Four variants associated with TFS with consistent effect direction were identified in stage II, including one in an intron of PCSK6 (proprotein convertase subtilisin/kexin type 6) reaching genome-wide significance (hazard ratio, 4.11 [95% confidence interval, 2.54-6.67]; P = 9.45 x 10(-9)). PCSK6 protein was highly expressed in IPF lung parenchyma. PCSK6 lung staining intensity, peripheral blood gene expression, and plasma concentration were associated with reduced TFS. Conclusions: We identified four novel variants associated with IPF survival, including one in PCSK6 that reached genome-wide significance. Downstream analyses suggested that PCSK6 protein plays a potentially important role in IPF progression

    Continuous Classification of Myoelectric Signals for Powered Prostheses using Gaussian Mixture Models

    No full text
    Pattern recognition is a key element of myoelectrically controlled prostheses. Improvements in classification accuracy have been achieved using various feature extraction and classification methodologies. In this paper, it is demonstrated that using a simple and direct approach can achieve high classification accuracy, while maintaining a low computational load; important characteristics for a real-time embedded system. An average classification accuracy of 94.06% was achieved for a six class problem, using a single mixture Gaussian mixture model, along with majority vote post-processing

    Continuous myoelectric control for powered prostheses using hidden Markov models

    No full text
    This paper represents an ongoing investigation of dexterous and natural control of upper extremity prostheses using the myoelectric signal. The scheme described within uses a hidden Markov model (HMM) to process four channels of myoelectric signal, with the task of discriminating six classes of limb movement. The HMM-based approach is shown to be capable of higher classification accuracy than previous methods based upon multilayer perceptrons. The method does not require segmentation of the myoelectric signal data, allowing a continuous stream of class decisions to be delivered to a prosthetic device. Due to the fact that the classifier learns the muscle activation patterns for each desired class for each individual, a natural control actuation results. The continuous decision stream allows complex sequences of manipulation involving multiple joints to be performed without interruption. The computational complexity of the HMM in its operational mode is low, making it suitable for a real-time implementation. The low computational overhead associated with training the HMM also enables the possibility of adaptive classifier training while in use

    Optimized Gaussian mixture models for upper limb motion classification

    No full text
    This paper introduces the use of Gaussian mixture models (GMM) for discriminating multiple classes of limb motions using continuous myoelectric signals (MES). The purpose of this work is to investigate an optimum configuration of a GMM-based limb motion classification scheme. For this effort, a complete experimental evaluation of the Gaussian mixture motion model is conducted on a 12-subject database. The experiments examine algorithmic issues of the GMM including the model order selection and variance limiting. The final classification performance of this GMM system has been compared with that of three other classifiers (a linear discriminant analysis (LDA), a linear pe

    A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses

    No full text
    This paper introduces and evaluates the use of Gaussian mixture models (GMMs) for multiple limb motion classification using continuous myoelectric signals. The focus of this work is to optimize the configuration of this classification scheme. To that end, a complete experimental evaluation of this system is conducted on a 12 subject database. The experiments examine the GMMs algorithmic issues including the model order selection and variance limiting, the segmentation of the data, and various feature sets including time-domain features and autoregressive features. The benefits of postprocessing the results using a majority vote rule are demonstrated. The performance of the GMM is compared to three commonly used classifiers: a linear discriminant analysis, a linear perceptron network, and a multilayer perceptron neural network. The GMM-based limb motion classification system demonstrates exceptional classification accuracy and results in a robust method of motion classification with low computational load

    Multiexpert automatic speech recognition using acoustic and myoelectric signals

    No full text
    Classification accuracy of conventional automatic speech recognition (ASR) systems can decrease dramatically under acoustically noisy conditions. To improve classification accuracy and increase system robustness a multiexpert ASR system is implemented. In this system, acoustic speech information is supplemented with information from facial myoelectric signals (MES). A new method of combining experts, known as the plausibility method, is employed to combine an acoustic ASR expert and a MES ASR expert. The plausibility method of combining multiple experts, which is based on the mathematical framework of evidence theory, is compared to the Borda count and score-based methods of combination. Acoustic and facial MES data were collected from 5 subjects, using a 10-word vocabulary across an 18-dB range of acoustic noise. As expected the performance of an acoustic expert decreases with increasing acoustic noise; classification accuracies of the acoustic ASR expert are as low as 11.5%. The effect of noise is significantly reduced with the addition of the MES ASR expert. Classification accuracies remain above 78.8% across the 18-dB range of acoustic noise, when the plausibility method is used to combine the opinions of multiple experts. In addition, the plausibility method produced classification accuracies higher than any individual expert at all noise levels, as well as the highest classification accuracies, except at the 9-dB noise level. Using the Borda count and score-based multiexpert systems, classification accuracies are improved relative to the acoustic ASR expert but are as low as 51.5% and 59.5%, respectively

    Reduction of stimulus artifact in somatosensory evoked potentials: Segmented versus subthreshold training

    No full text
    A new approach to stimulus artifact cancellation is introduced, which attempts to model the process of stimulus artifact generation. This is done by training an estimator with multiple exemplars of the stimulus artifact at levels below the threshold of evoked response stimulation. Two estimators are formulated: one using a dynamic neural network and another using a linear estimator. The performance of these new approaches is compared to the segmented training approach, which has been previously demonstrated to be one of the most capable methods available. Performance assessment is carried out using a novel metric introduced in this paper, which focuses upon the relevant portion of the recorded waveform. The new cancellation schemes show distinct performance advantages over the segmented traini
    corecore