2 research outputs found

    Robust, Superamphiphobic Fabric with Multiple Self-Healing Ability against Both Physical and Chemical Damages

    No full text
    Superamphiphobic coatings with excellent repellency to low surface tension liquids and multiple self-healing abilities are very useful for practical applications, but remain challenging to realize. Previous papers on self-healing superamphiphobic coatings have demonstrated limited liquid repellency with single self-healing ability against either physical or chemical damage. Herein, we describe a superamphiphobic fabric that has remarkable multi-self-healing ability against both physical and chemical damages. The superamphiphobicity was prepared by a two-step surface coating technique. Fabric after coating treatment showed exceptional liquid-repellency to low surface tension liquids including ethanol. The fabric coating was also durable to withstand 200 cycles of laundries and 5000 cycles of Martindale abrasion without apparently changing the superamphiphobicity. This highly robust, superamphiphobic fabric may find applications for the development of “smart” functional textiles for various applications

    DataSheet1_An electronically conductive 3D architecture with controlled porosity for LiFePO4 cathodes.docx

    No full text
    Thick LiFePO4 (LFP) cathodes offer a promising solution to increasing the areal capacity and reducing the cost of Li-ion batteries while retaining the qualities intrinsic to LFP, including long cycle lifetimes and thermal stability required for electric vehicles and stationary energy storage applications. However, the primary challenges of thick LFP cathodes are poor rate capability and cycling stability due to LFP’s electronically insulating material property, poor electronic conductivity, and long diffusion length at high electrode thicknesses. Herein, we propose an electrode architecture composed of vertically aligned carbon fibers (CFs) attached to a plasticized current collector (PCC) to promote rate capability, cycle life, and further enhance the safety of thick LFP cathodes. The effectiveness of the CF-PCC architecture is demonstrated by electrochemical analysis with a good areal capacity of 3.5 mA cm-2, excellent cycling stability at C/3, and good rate capability up to 1C. These results are confirmed by investigating the architecture’s impact on ionic diffusivity via electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) compared to the conventional slurry cast LFP cathode.</p
    corecore