10,864 research outputs found
Modeling Data-Plane Power Consumption of Future Internet Architectures
With current efforts to design Future Internet Architectures (FIAs), the
evaluation and comparison of different proposals is an interesting research
challenge. Previously, metrics such as bandwidth or latency have commonly been
used to compare FIAs to IP networks. We suggest the use of power consumption as
a metric to compare FIAs. While low power consumption is an important goal in
its own right (as lower energy use translates to smaller environmental impact
as well as lower operating costs), power consumption can also serve as a proxy
for other metrics such as bandwidth and processor load.
Lacking power consumption statistics about either commodity FIA routers or
widely deployed FIA testbeds, we propose models for power consumption of FIA
routers. Based on our models, we simulate scenarios for measuring power
consumption of content delivery in different FIAs. Specifically, we address two
questions: 1) which of the proposed FIA candidates achieves the lowest energy
footprint; and 2) which set of design choices yields a power-efficient network
architecture? Although the lack of real-world data makes numerous assumptions
necessary for our analysis, we explore the uncertainty of our calculations
through sensitivity analysis of input parameters
Health Biotechnology Innovation for Social Sustainability -A Perspective from China
China is not only becoming a significant player in the production of high-tech products, but also an increasingly important contributor of ideas and influence in the global knowledge economy. This paper identifies the promises and the pathologies of the biotech innovation system from the perspective of social sustainability in China, looking at the governance of the system and beyond. Based on The STEPS Centre’s ‘Innovation, Sustainability, Development: A New Manifesto’, a ‘3D’ approach has been adopted, bringing together social, technological and policy dynamics, and focusing on the directions of biotechnological innovation, the distribution of its benefits, costs and risks and the diversity of innovations evolving within it and alongside it
HORNET: High-speed Onion Routing at the Network Layer
We present HORNET, a system that enables high-speed end-to-end anonymous
channels by leveraging next generation network architectures. HORNET is
designed as a low-latency onion routing system that operates at the network
layer thus enabling a wide range of applications. Our system uses only
symmetric cryptography for data forwarding yet requires no per-flow state on
intermediate nodes. This design enables HORNET nodes to process anonymous
traffic at over 93 Gb/s. HORNET can also scale as required, adding minimal
processing overhead per additional anonymous channel. We discuss design and
implementation details, as well as a performance and security evaluation.Comment: 14 pages, 5 figure
TARANET: Traffic-Analysis Resistant Anonymity at the NETwork layer
Modern low-latency anonymity systems, no matter whether constructed as an
overlay or implemented at the network layer, offer limited security guarantees
against traffic analysis. On the other hand, high-latency anonymity systems
offer strong security guarantees at the cost of computational overhead and long
delays, which are excessive for interactive applications. We propose TARANET,
an anonymity system that implements protection against traffic analysis at the
network layer, and limits the incurred latency and overhead. In TARANET's setup
phase, traffic analysis is thwarted by mixing. In the data transmission phase,
end hosts and ASes coordinate to shape traffic into constant-rate transmission
using packet splitting. Our prototype implementation shows that TARANET can
forward anonymous traffic at over 50~Gbps using commodity hardware
Fourier domain optical coherence tomography system with balance detection
A Fourier domain optical coherence tomography system with two spectrometers in balance detection is assembled using each an InGaAs linear camera. Conditions and adjustments of spectrometer parameters are presented to ensure anti-phase channeled spectrum modulation across the two cameras for a majority of wavelengths within the optical source spectrum. By blocking the signal to one of the spectrometers, the setup was used to compare the conditions of operation of a single camera with that of a balanced configuration. Using multiple layer samples, balanced detection technique is compared with techniques applied to conventional single camera setups, based on sequential deduction of averaged spectra collected with different on/off settings for the sample or reference beams. In terms of reducing the autocorrelation terms and fixed pattern noise, it is concluded that balance detection performs better than single camera techniques, is more tolerant to movement, exhibits longer term stability and can operate dynamically in real time. The cameras used exhibit larger saturation power than the power threshold where excess photon noise exceeds shot noise. Therefore, conditions to adjust the two cameras to reduce the noise when used in a balanced configuration are presented. It is shown that balance detection can reduce the noise in real time operation, in comparison with single camera configurations. However, simple deduction of an average spectrum in single camera configurations delivers less noise than the balance detection
- …
