14 research outputs found

    Deposition patterns of SO42-, NO3- and H+ in the Brazilian Territory

    No full text
    SO42-, NO3 and H+ depositions are estimated in the Brazilian territory based on the existing rainfall chemical data arid on annual rainfall distribution over the whole territory. Local and regional depositions are estimated. Rainfall chemical data over the Brazilian territory shows that the average pH values are usually low (between 4.0 and 5.5). These values are observed in the tropical Amazon forest as well as in urban areas. However, the rainwater acidity in the tropical forests are due to organic acids naturally produced by the vegetation while in urban areas the acidity is mainly due to acidic anion deposition (NO3- and SO42-). In some Amazonian areas, the average input values through rainfall for NO3- is about 0.06 keq.ha.yr(-1) and for SO42- is between 0.23 and 0.54 keq.ha(-1).yr(-1). On the other hand, in some urban centers, such as Sao Paulo, values of .072 keq.ha(-1).yr(-1) for NO3- and 1.16 keq.ha(-1).yr(-1) of SO42- are found and in sites where sulfate sources (coal mining) are present, as for the area of Florianopolis, values as high as 5.59 keq.ha(-1). yr(-1) for SO42- are found.Pages: 1121-112

    Use of pedological maps in the identification of sensitivity of soils to acidic deposition: application to Brazilian soils

    No full text
    The pedogeochemical maps present the spatial distribution of soils according to crystalochemical parameters (clay fraction) and physic-chemical aspects of the sorting complex (CEC and BS). These maps are adequate tool for environmental studies and particularly, for the analysis of the terrestrial ecosystem sensibility to acidic deposition. The pedogeochemical maps of the Brazilian soils, elaborated using FAO Soil World Map, allowed establishing the soil distribution according to 5 classes of vulnerability to acidic deposition, as defined by Stockholm Environmental Institute (SEI). From these maps, it is observed that about 50% of the Brazilian soils are high vulnerable to acidic deposition and can be included within the most sensitive class. This group is formed by well-developed and mature soils, constituted by clay minerals of kaolinite type associated with variable amount of gibbsite. About 8% of the soils can be considered as the least sensitive class. They correspond to Topomorphic Vertisols (Vertissolo, Embrapa 1999), Planosols (Planossolo, Embrapa 1999) and saline soils. Finally, the remaining soils represent the balanced media that dominate the northeastern semiarid zones and the south and northeastern subtropical zones.Pages: 139-14

    Nutrients and Nonessential Elements in Soil after 11 Years of Wastewater Irrigation

    No full text
    Irrigation of citrus (Citrus aurantium L. x Citrus paradise Macf.) with urban reclaimed wastewater (RWW) can be economical and conserve fresh water. However, concerns remain regarding its deleterious effects on soil quality. We investigated the ionic speciation (ISP) of RWW and potential impacts of 11 yr of irrigation with RWW on soil quality, compared with well-water (WW) irrigation. Most of nutrients (similar to 53-99%) in RWW are free ionic species and readily available for plant uptake, such as: NH4+, NO3-, K+, Ca2+, Mg2+, SO42-, H3BO3, Cl-, Fe2+, Mn2+, Zn2+, Co2+, and Ni2+, whereas more than about 80% of Cu, Cr, Pb, and Al are complexed with CO3-, OH-, and/or organic matter. The RWW irrigation increased the availability and total concentrations of nutrients and nonessential elements, and soil salinity and sodicity by two to three times compared with WW-irrigated soils. Although RWW irrigation changed many soil parameters, no difference in citrus yield was observed. The risk of negative impacts from RWW irrigation on soil quality appears to be minimal because of: (i) adequate quality of RWW, according to USEPA limits; (ii) low concentrations of metals in soil after 11 yr of irrigation with RWW; and (iii) rapid leaching of salts in RWW-irrigated soil during the rainy season.FAPESP (Sao Paulo Research Foundation) [06/56419-6]Sao Paulo Research Foundation (FAPESP)University of FloridaUniversity of Florid

    Silicic magmas from the continental Cameroon Volcanic Line (Oku, Bambouto and Ngaoundere): 40Ar-39Ar dates, petrology, Sr-Nd-O isotopes and their petrogenetic significance

    No full text
    The intraplate Cameroon Volcanic Line (CVL) straddles the African-South Atlantic continent-ocean boundary and is composed mainly of alkaline basic volcanic rocks. Voluminous silicic volcanics characterize the continental sector of the CVL. We present here new geochemical, isotopic (Sr-Nd-O) and 40Ar/39Ar geochronological data on the main silicic volcanic centres of the Western (Mt. Oku, Sabga and Mt. Bambouto) and Eastern (Ngaoundere plateau) Cameroon Highlands. The silicic volcanism of Mt. Oku, Sabga and Mt. Bambouto occurred between 25 and 15 Ma and is represented by voluminous quartz-normative trachytes and minor rhyolitic ignimbrites. At Mt. Bambouto central volcano about 700 m of silicic volcanics erupted in less than 2.7 million years. These silicic volcanics are associated with slightly to moderately alkaline basalts and minor basanites. In general, onset of the silicic volcanism migrated from NE (Oku: 25 Ma) to SW (Sabga: 23 Ma; Bambouto: 18 Ma; and Mt. Manengouba: 12 Ma). The silicic volcanism of the Ngaoundere plateau (eastern branch of the CVL) is instead dominated by nepheline-normative trachytes which are associated with strongly alkaline basalts and basanitic rocks. These Ne-trachytes are younger (11-9 Ma) than the Q-trachytes of the Western Highlands. The least differentiated silicic volcanics are isotopically similar (87Sr/86Sr 0.51278) to the associated alkaline basalts suggesting differentiation processes without appreciable interaction with crustal materials. Such interactions may, however, have played some role in the genesis of the most evolved silicic volcanics which have 87Sr/86Sr as high as 0.705-0.714. Fractional crystallization is the preferred mechanism for genesis of the silicic melts of both Western and Eastern Highlands, as shown by modeling major and trace element variations. The genesis of the least evolved Q-trachytes from the Western Highlands, starting from slightly to moderately alkaline basalts, is compatible with fractionation of dominantly plagioclase, clinopyroxene and magnetite. Crystal fractionation may have occurred at low pressure and at QFM buffer f(O)(2) conditions. Parental magmas of the Ngaoundere Ne-trachytes are likely instead to have been strongly alkaline basalts which evolved through crystal fractionation at higher P (6-2 kbar) and f(O)(2) (QFM + 2). The migration (25 to 12 Ma) of the silicic volcanism from NE to SW in the continental sector of the CVL is reminiscent of that (31-5 Ma) of the onset of the basic volcanism in the oceanic sector (Principe to Pagalu islands) of the CVL. These ages, and that (11-9 Ma) of the silicic volcanism of the Ngaoundere plateau, indicate that the Cameroon Volcanic Line as a whole may not be easily interpreted as the surface expression of hot-spot magmatism
    corecore